
ovices and experts alike, whether in a uni-
versity or corporation, repeat the same mis-
takes over and over again when developing
real-time software. I have observed this while
reviewing and grading code in academic pro-
jects, and as a consultant involved in numer-

ous design and code reviews for industry.
Most real-time software developers are not even aware

that their favorite methods can be problematic. Quite often,
experts are self-taught; hence they tend to have the same
bad habits as when they first began, usually because they
never witnessed better ways of programming their embed-
ded systems. These experts then train novices, who subse-
quently acquire the same bad habits. The purpose of this
article is to improve your awareness of common problems,
and to provide a start towards eliminating mistakes and thus

creating software that is both more reliable and easier to
maintain.

This list first began as the 10 most common pitfalls, but
there were just so many common mistakes and problems
that the list grew. It expanded through 15 and 25, to its pre-
sent number. This month, I’ll present problems 30 through
16; the rest I’ll lay out for you next month.

For each problem, I present the misconception or
source of the problem. Then I offer possible solutions or
alternatives that can help minimize or eliminate the mis-
takes. If you’re not familiar with the details or terminology
of the alternate solutions, then a quick library or Web
search should yield additional literature on the topic. While
there is usually agreement about most items being mistakes,
some of the mistakes listed and the corresponding pro-
posed solutions may be controversial. In such cases, simply

32 OCTOBER 1999 Embedded Systems Programming

D A V I D B . S T E W A R T

f
e

a
t

u
r

e

N

30 Pitfalls for
Real-Time Software
Developers, Part 1
The path to successful real-time software development is strewn with pitfalls along the way that can trap the
unwary programmer. This month and next the author guides you past 30 of them.

Embedded Systems Programming OCTOBER 1999 33

highlighting that there is a disagree-
ment as to what is the best way to alle-
viate these problems encourages
designers to compare their methods
to other approaches, and to reconsid-
er if their methods are provably better.

Correcting just one of these mis-
takes within a project can lead to
weeks or months of savings in man-
power (especially during the mainte-
nance phase of a software life cycle) or
can result in a significant increase in
quality and robustness of the applica-
tion. If multiple mistakes are common
and they are all fixed, potential com-
pany savings or additional profits can
be in the thousands or millions of dol-
lars. Thus I encourage you to review
your current methods and policies,
compare them to each of the reported
mistakes and the proposed alterna-
tives, and decide for yourself if poten-
tial savings exist for your company or
project. Even if there are no direct sav-
ings, consider the potential for
improved quality and robustness at no
extra cost by modifying some of your
current practices.

Here now are the first 15 of the 30
most common mistakes; problems that
are higher on the list (where #30 is
lowest and #1 is highest on list) are
either more common and/or have the
most impact on quality, development
time, and software maintenance.
Naturally, the order represents my
opinion. It’s not so important that one
mistake is listed higher on the list than
another. What is important is that
both are listed, thus both may be sig-
nificant in your specific environment.

#30 “My problem is different.”
Many designers and programmers

refuse to listen to the experiences of
others, claiming that their applica-
tions are different, and of course,
much more complicated. Designers

should be more open-minded about
the similarities in their work. Even
what seems like the most different
applications are probably nearly iden-
tical when you consider the nuts and
bolts of the real-time infrastructure.
For example, communications engi-
neers will claim their applications have
no similarities to systems designed by
control engineers because of the high
volume of data and the need for spe-
cial processors such as digital signal
processors (DSPs). In response, ask
“What is different in the LCD display
software in a cellular phone vs. one in
a temperature controller? Are they
really different?”

Comparing control and communi-
cation systems side-by-side, both are
characterized by modules that have
inputs and outputs, with a function
that maps the input to the output. A
256 x 256 image processed by a DSP
algorithm might not be that different
from graphical code for an LCD dot
matrix display of size 320 x 200.
Furthermore, both use hardware with
limited memory and processing power
relative to the size of the application;
both require development of software
on a platform distinct from the target,
and many of the issues in developing
software for a DSP also apply to devel-
oping software for a microcontroller.

The timing and volume of data are
different. But if the system is designed
correctly, these are just variables in
equations. Methods to analyze
resources such as memory and pro-
cessing time are the same—both may
require similar real-time scheduling,
and both may also have high-speed
interrupt handlers that can cause pri-
ority inversion.

Perhaps if control systems and com-
munication systems are similar, so are
two different control applications or
two different communication systems.

Every application is unique, but more
often than not the procedure to speci-
fy, design, and build the software is the
same. Embedded software designers
should learn as much as possible from
the experiences of others and not
shrug off experience just because it
was acquired in a different application
area.

#29 Tools choice driven by marketing
hype, not by evaluation of technical needs

Software tools for embedded sys-
tems are often purchased based on the
flashiness of the marketing, because a
lot of other people are using them, or
because of a feature that sounds
appealing but really does not make a
difference.

Flashiness. Just because one tool has
a prettier graphical user interface
than another does not make it better.
It’s important to consider the techni-
cal capabilities of each, relative to the
needs of the application being built.

Number of users. Buying software
from a vendor just because it’s the
biggest does not mean it’s the best.
Along with pitches that more people
are using the software are probably
hidden true stories that more people
are paying for more than they really
need, or that more people have
unused versions of the tools sitting on
the shelf after discovering the tools
were not suited to their needs.

Promises of compatibility. Managers
are especially influenced by a product
because of promises of compatibility.
So what if software is 100% POSIX-
compliant? What is its relevance? Is
there a plan to change the operating
system? Suppose there is a change to
another POSIX-compliant operating
system—what is there to gain?
Absolutely nothing, unless “exten-
sions” are used. But if such extensions
are used, compatibility is lost, hence

Many designers and programmers refuse to listen to the experiences

of others, claiming that their applications are different, and of course,

much more complicated.

R
U

P
E

R
T

A

D
L

E
Y

the benefits are no longer there.
Standards such as POSIX have not
been proven to even be good for real-
time systems, let alone the best.
Therefore, don’t assume that the
product is better because of that
promise. Portability and reusability
can only be achieved if all the design-
ers follow proven software engi-
neering strategies for developing com-
ponent-based software.1,2

When selecting tools, consider the
needs of the application first; then
investigate the dozens (or hundreds)
of options available from a technical
perspective, as they relate specifically
to the application requirements. The
best tools for a particular design or
application are not necessarily the
most popular.

#28 Large if-then-else and case statements
It’s not uncommon to see large if-

else statements or case statements in
embedded code. These are problem-
atic from three perspectives:

• Such statements are extremely dif-
ficult to debug, because code ends
up having so many different paths.
If statements are nested it becomes
even more complicated

• The difference between best-case
and worst-case execution time
becomes significant. This leads to
either under-utilizing the CPU, or
the possibility of timing errors
when the longest path is taken

• The difficulty of structured code
coverage testing grows exponen-
tially with the number of branches,
so branches should be minimized

Computational methods can often
provide an equivalent answer.
Performing Boolean algebra, imple-
menting a finite state machine as a
jump table, or using lookup tables are
alternatives that can reduce a 100-line
if-else statement to less than 10 lines of
code.

Here is a trivial example of con-
verting an if statement to Boolean
algebra:

if (x == 1)

x=0;

else

x=1

Instead, a Boolean algebra computa-
tion would be the following:

x = !x; // x = NOT x; can also use

// x = 1-x

Despite the simplicity, many program-
mers still toggle a Boolean value with
the if statement above.

#27 Delays implemented as empty loops
Real-time software often uses delays

to ensure that data sent or received
over an I/O port has time to propa-
gate. These delays are frequently
implemented by putting a few no-ops
or empty loops (assuming volatile is
used if the compiler performs opti-
mizations). If this code is used on a
different processor, or even the same
processor running at a different rate
(for example, a 25MHz vs. 33MHz
CPU), the code may stop working on
the faster processor. This is especially
something to avoid, since it results in
the kind of timing problem that is
extremely difficult to track down and
solve, because the symptoms of the
problem are sporadic.

Instead, use a mechanism based on
a timer. Some RTOSes provide these
functions, but if not, one can still easi-
ly be built. Following are two possi-
bilities to build a custom delay(int
usec) function.

Most count-down timers allow the
software to read a register to obtain
the current count-down value. A sys-
tem variable can be saved to store the
rate of the timer, in units such as
microseconds per tick. Suppose the
value is 2µs per tick, and a delay of
10µs is required: the delay function
busy-waits for five timer ticks. Suppose
a different speed processor is used—
the timer ticks are still the same. Or if
the timer frequency changes, then the
system variable would change, and the
number of ticks to busy-wait would

change, but the delay time would
remain the same.

If the timer doesn’t support read-
ing intermediate count-down values,
an alternative is to profile the speed of
the processor during initialization.
Execute an empty loop continuously
and count how often it occurs between
two timer interrupts. Since frequency
of the timer interrupt is known, a
value for the number of microseconds
per iteration can be computed. This
value is then used to dynamically
determine how many iterations of the
loop to perform for a specified delay
time. In our custom RTOS with this
implementation, the delay function
was accurate within 10% of the desired
time for any processor with which we
tested it, without ever having to
change the code.

#26 Interactive and incomplete test programs
Many embedded designers create a

series of test programs, each program
testing a separate feature. Test pro-
grams need to be executed one at a
time, and in some cases require the
user to provide input (say, through a
keypad or switch) and observe the out-
put response. The problem with this
method is that programmers tend only
to test what they are changing. Since
there are often interactions between
unrelated code due to the sharing of
resources, every time a change is
made, the entire system should under-
go testing.

To accomplish this, avoid interac-
tive test programs. Create a single test
program that goes through as much
self-testing as possible, so that any time
even the smallest change is made, a
complete test can easily and quickly be
performed.

Unfortunately, this is more easily
said than done. Some testing, especial-
ly of I/O devices, can only be done
interactively. Nevertheless, the princi-
ple of automated testing should be at
the forefront of any attempt to create
test software, and not a side-thought
with test code written only on an as-
needed basis.

34 OCTOBER 1999 Embedded Systems Programming

30
 pitfalls

#25 Reusing code not designed for reuse
Code that is not designed for reuse

will not be in the form of an abstract
data type or object. The code may
have interdependencies with other
code, such that if all of it is taken,
there is more code than needed. If
only part is taken, it must be thor-
oughly dissected, which increases the
risk of unknowingly cutting out some-
thing that is needed, or unexpectedly
changing the functionality. If code
isn’t designed for reuse, it’s better to
analyze what the existing code does,
then redesign and re-implement the
code as well-structured reusable soft-
ware components. From there on, the
code can be reused. Rewriting this
module will take less time than the
development and debugging time
needed to reuse the original code.

A common misconception is that
because software is defined in separate
modules, it is naturally reusable. This
is a separate mistake on its own, relat-
ed to creating software with too many
dependencies. See more details in mis-
take #18.

#24 Generalizations based on a single
architecture

Embedded software designers may
have the need to develop software that
is intended to run on a variety of pro-
cessors and platforms. In such a case,
it’s not uncommon for the program-
mer to begin writing software for one
of the platforms, but generalize any-
thing and everything in preparation
for porting the code at a later time.

Unfortunately, doing so usually
causes more harm than good. The
design will tend to over-generalize
items that are very similar on very dif-
ferent architectures, while not gen-
eralizing some items that are different,
but that the designer did not foresee
as different.

A better strategy is to design and
develop the code simultaneously on
multiple architectures, generalizing
only those parts that are different in
the different architectures. Inten-
tionally choose three or four proces-

sors that are very different (for exam-
ple, from different manufacturers and
using different architectures).

#23 One big loop
When real-time software is

designed as a single big loop, we have
no flexibility to modify the execution
time of various parts of the code inde-
pendently. Few real-time systems need
to operate everything at the same rate.
If the CPU is overloaded, one of the
methods to reduce utilization is to
selectively slow down only the less crit-
ical parts of the code. This approach
works, however, only if the multitask-
ing features of an RTOS are used, or
the code was developed based on a
flexible custom or commercial real-
time executive.

#22 No analysis of hardware peculiarities
before starting software design

How long does it take to add two
eight-bit numbers? What about two 16-
bit or 32-bit numbers? What about two
floats? What if an eight-bit number is
added to a float? A software designer
who cannot answer these questions off
the top of his or her head for the tar-
get processor isn’t adequately pre-
pared to design and code real-time
software.

Here are sample answers to the
above measurements for a 6MHz Z180
(in microseconds): 7, 12, 28, 137, and
308. Note that it takes 250% more
time to do float plus byte than float
plus float, due to the long conversion
time from byte to float. Such anom-
alies are often the source of code that
overloads the processor.

In another example, a special pur-
pose floating-point accelerator did
floating-point addition/multiplication
10 times faster than a 33MHz 68882,
but sin() and cos() took the same
amount of time. This is because the
68882 has the trigonometric functions
built into its hardware, while the float-
ing point accelerator did those partic-
ular functions in software.

When code is implemented for a
real-time system, being aware of the

timing implications of every single line
of code is important. Understand the
capabilities and limitations of the tar-
get processor(s), and redesign an
application that makes excessive use of
slow instructions. For example, for the
Z180, doing everything in float is bet-
ter than having only some variables
float and lots of mixed-type arithmetic.

#21 Over-designing the system
If the processor and memory uti-

lization are less than 90% on average
and less than 100% peak, then the sys-
tem has probably been over-designed.
Writing programs for a processor with
more than enough resources is a luxu-
ry for a software developer. In some
cases, however, this luxury is so costly
that it can make the difference
between a profit and bankruptcy!
Contributing towards minimizing the
price and power consumption of an
embedded system is a software engi-
neer’s duty. If the CPU is only 45% uti-
lized, you can use a processor that
operates at half the speed instead,
thus saving as much as four times the
power and possibly one or more dol-
lars per processor.

If the product is mass-produced,
saving $1 on the processor could save
a million dollars over the production
span of the item. If the product is bat-
tery-powered, it will allow the battery
to last much longer, thus increasing
the marketing appeal of the product.
As an extreme example of power con-
sumption of computers, consider a
laptop. Most have less than three
hours of power when using a heavy
battery. A watch, however, has a light-
weight, cheap battery that can last
three years. Although software isn’t
usually associated with power con-
sumption, it does have a major role.

Fast processors and more memory
than necessary tend to also lead to lazi-
ness in thinking about the design.
Start embedded development with
slower processors with less memory,
and move up to the next level of
processor only on an as-needed basis.
Software that uses hardware more effi-

36 OCTOBER 1999 Embedded Systems Programming

30
 pitfalls

ciently is more likely to evolve from
this approach than from later trying to
cut corners to bring down the cost of
the system.

#20 Fine-grain optimizing during first
implementation

The converse to problem #21 is
also a common mistake. Some pro-
grammers foresee anomalies (some
are real, some are mythical). An exam-
ple of a mythical anomaly is that mul-
tiplication takes much longer than
addition. Many designers would
implement 3*x as x+x+x. On many
embedded processors, however, multi-
plication is less than twice as long as
addition, so x+x+x would be slower
than 3*x.

A programmer who foresees all the
anomalies may implement the first
version of the code in an unreadable
manner so as to optimize the code;
this is before knowing if optimization
is even needed. As a general rule,
don’t perform fine-grained optimiza-
tions during implementation. Only
optimize segments of code later if it
proves necessary to get better perfor-
mance. If optimization is unnecessary,
then keep the more readable code. If

the CPU is overloaded, it’s nice to
know that a variety of places remain in
the code where simple, straightfor-
ward optimizations can be performed
quickly.

#19 “It’s just a glitch.”
Some programmers use the same

workarounds over and over again
because the system has a glitch. A pro-
grammer’s typical response is that it
always executes well if the workaround
is used.

Unfortunately, the same errors that
force a workaround are likely to resur-
rect themselves later in a different
form. Anytime there is any “glitch,” it
means something is wrong! Make sure
appropriate steps are taken to under-
stand the problem. A workaround may
be valuable to ensure that a product is
shipped on time, but immediately
after the deadline, take a bit of extra
time to identify the problem, to
ensure it does not show up again—
such as during the next big demo.

#18 Too many inter-module dependencies
The dependencies between mod-

ules in a good software design can be
drawn as a tree, as shown in Figure 1a.

A dependency diagram consists of
nodes and arrows, such that each
node represents a module (such as
one source code file), and the arrows
show dependencies between that node
and other modules. Modules on the
bottom-most row are not dependent
on any other software module. To
maximize software reusability, arrows
should always point downwards, and
not upwards or bidirectionally. For
example, module abc depends on
module def if it has a #include “def.h”
in the code, or an extern declaration
in the file abc.c to a variable or func-
tion defined in module def.c.

The dependency graph is a valu-
able software engineering aid. Given
such a diagram, it’s easy to identify
what parts of the software can be
reused, create a strategy for incremen-
tal testing of modules, and develop a
method to limit error propagation
through the entire system.

Each circular dependency (a cycle
in the graph) reduces the ability to
reuse the software module. Testing
can only occur for the combined set
of dependent modules, and errors
will be difficult to isolate to a single
module. If the graph has too many

38 OCTOBER 1999 Embedded Systems Programming

30
 pitfalls

FIGURE 1 Examples of dependency graphs, with and without cycles. An objective in developing good software is to
decompose code into modules to minimize or eliminate circular dependencies. a) Dependency graph with no cycles.
This is desirable. b) Dependency graph with cycle between ghi and jkl. c) Dependency graph with many circular
dependencies, including a major circular dependency.

abc

def ghi

jkl stu

mno pqr uvw

xyz

abc

def ghi

jkl stu

mno pqr uvw

xyz

abc

def ghi

jkl stu

mno pqr uvw

xyzA B C

cycles, or a major cycle exists where a
module at the bottom-most level of
the graph is dependent on the top-
most module, then not a single mod-
ule is reusable.

Figures 1b and 1c both include cir-
cular dependencies. If a circular
dependency is inevitable, Figure 1b is
much preferred over Figure 1c, since
in 1b reusing some of the modules is
still possible. The restriction in Figure
1b is that modules pqr and xyz can only
be reused together. In Figure 1c, how-
ever, reusing any subset of modules
isn’t possible, as too many dependen-
cies exist between modules.
Furthermore, a major circular depen-
dency exists, where module xyz—
which should not be dependent on
anything because it is at the bottom of
the graph—is dependent on abc. Only
one such major cycle is required to
make the entire application non-
reusable. Unfortunately, most existing
applications are more similar to
Figure 1c than to Figure 1a or Figure
1b, hence the difficulty in reusing soft-
ware from existing applications.

To best use dependency graphs to
analyze the reusability and maintain-
ability of software, write code that
makes it easy to generate the graph.
That is, all extern declarations for
exported variables in functions in a
module xxx should be defined in file
xxx.h. In module yyy, simply looking at
what files are #include’d allows deter-
mination of that module’s dependen-
cies. If this convention is not followed,
and an extern declaration is embed-
ded in yyy.c instead of #includeing the
appropriate file, then the dependency
graph will be erroneous and an
attempt to reuse code that appears to
be independent of the other module
will be difficult.

#17 “I don’t have time to take a break.”
Many programmers struggle non-

stop for hours on a problem, only to
hit dead end after dead end. They
continue because they face a deadline.
Many hours could be saved if the per-
son simply took a break after not mak-

ing any progress for an hour. Relax,
take a walk around a lake, go for a
beer, take a nap—anything.

With a clear mind that results from
a bit of mental relaxation, analyzing
what is happening is much easier, and
you can more quickly converge to a
solution. A two-hour break—even with
a deadline looming—might save a day
of work. A 10-minute coffee break
away from the computer can some-
times save an hour of work.

#16 Using message passing as primary
inter-process communication

When software is developed as
functional blocks, the first thought is
to implement inputs and outputs as
messages. Although this works well in
non-real-time environments—such as
for distributed networking—it’s prob-
lematic in a real-time system.

Three major problems arise when
using message passing in a real-time
system:

• Message passing requires synchro-
nization, a primary source of
unpredictability to real-time sched-
uling. Functional blocks end up
executing synchronously, and thus
analysis of the system’s timing is dif-
ficult, if not impossible

• In systems with bi-directional com-
munication between processes or
any kind of feedback loop, dead-
lock is a possibility

• Message passing incurs significantly
more overhead as compared to
shared memory. While messages
may be required for communica-
tion across networks and serial
lines, it’s often inefficient when ran-
dom-access to the data is possible,
as is the case for interprocess com-
munication on a single processor

State-based communication is pre-
ferred in embedded systems to pro-
vide higher assurability. A state-based
system uses structured shared memo-
ry, such that communication has less
overhead. The most recent data is
always available to a process when the

process needs it. Steenstrup and Arbib
developed the port-automation theory
to formally prove that a stable and reli-
able control system can be created by
only reading the most recent data.3

Costly blocking is eliminated by creat-
ing local copies of shared data, to
ensure that every process has mutually
exclusive access to the information it
needs.2 Using states instead of mes-
sages also provides robustness if the
possibility of lost messages exists, if
code does not all execute at the same
rate, and if implementing with shared
memory generates less operating sys-
tem overhead.

Converting control systems from
message-based communication to
state-based communication is general-
ly straightforward. For example, an
intelligent train control system has
independent control of every brake to
maximize train handling. To minimize
stopping distance when coming to a
full stop, all the brakes on the train
must be applied together. The I/O
logic for each brake is handled by a
separate process; the control module
must inform each brake module to
turn on the brakes. When using a mes-
sage-based system, the controlling unit
sends a message, “apply brake,” to
every brake process. This approach
has high communication overhead,
potential loss of messages if tasks exe-
cute at different frequencies, nonde-
terministic blocking, a separate copy
of the message for every process, and
the possibility of deadlock. Due to the
dependencies among processes, it cre-
ates a real-time system that is difficult
to analyze and is not suitable for
reconfigurable systems. In contrast, in
a state-based communication mecha-
nism, each brake module executes
periodically and monitors the brake
variable to update the state of its own
brake I/O. For example, instead of
the “apply brake” message, revise the
state of the brake variable so that it
says, “the brake should be on.” Since
processes are periodic, a schedulabili-
ty analysis is easier. Processes only
need to bind to a single element in the

40 OCTOBER 1999 Embedded Systems Programming

30
 pitfalls

state table, thus eliminating direct
dependencies between processes.
Communication through shared
memory also incurs less overhead
when compared to a message-passing
system.

When transferring a stream of data
between objects, a producer/con-
sumer-type buffer should be created in
shared memory, such that the maxi-
mum amount of data that is processed
during each periodic cycle is software-
controlled.

And so you have the first half of my
list of 30 pitfalls. Next month, I’ll pre-
sent the top 15. esp

Dr. David B. Stewart is an assistant pro-
fessor at University of Maryland. He
earned his PhD in computer engineering
from Carnegie Mellon University. He teach-
es and consults in the area of real-time
embedded software. He has led large stu-
dent projects, including the Pinball
Machine Project that was demonstrated in
Las Vegas, and the Computer-Controlled
Electric Train project that received an hon-
orable mention in the 1998 Motorola
University Design Contest. His research
focuses on next generation RTOS and mid-
dleware technology to support the rapid
design and analysis of dynamically recon-
figurable real-time software. He may be con-
tacted through his home page at
www.ece.umd.edu/~dstewart.

References
1. D.B. Stewart, “Designing Software

Components for Real-Time

Applications,” in Proceedings of

Embedded Systems Conference, San

Jose, CA, September 1999.

2. D.B. Stewart, R.A. Volpe, and P.K.

Khosla, “Design of dynamically recon-

figurable real-time software using port-

based objects,” IEEE Trans. on Software

Engineering, v. 23, n. 12, Dec. 1997.

3. M. Steenstrup, M. Arbib, and E.G.

Manes. “Port Automata and the

Algebra of Concurrent Processes,”

Journal of Computer and System

Sciences, v. 27, n.1, pp. 29-50, Jan.

1983.

Embedded Systems Programming OCTOBER 1999 41

30
 p

it
fa

lls

	back: <BACK

