
ast month, I presented the first half of the 30
most common mistakes made by real-time soft-
ware developers. As I continue this month, I’ll
state the misconception or source for each prob-
lem. In addition, I’ll provide possible solutions
or alternatives that can help minimize or elimi-

nate the mistakes. If you are not familiar with the details or
terminology of the alternate solutions, a library or Web
search should yield additional literature on the topic.

While there is usually agreement about most of these
items being mistakes, some of the mistakes listed and the
corresponding proposed solutions may be controversial. In
such cases, simply highlighting this disagreement can
encourage designers to compare their methods to other
approaches, and to reconsider whether their methods are
provably better.

I’ll now present the top 15 problems. Problems that are

higher on the list (where #15 is lowest and #1 is highest) are
either more common and/or have more impact on quality,
development time, and software maintenance. Naturally,
the order is based on my opinion, and it isn’t so important
that one mistake is listed higher on the list than another.
What is most important is that any item on the list may be
significant in your specific environment.

#15 “Nobody else here can help me.”
As most any teacher will confirm, you learn more about a
topic by teaching it.

Real-time programmers often feel helpless when they
encounter obstacles (which happens all the time) such as
an I/O device not working as described in the documenta-
tion. Often, few others in the organization have the level of
knowledge required for this kind of programming, leaving
these programmers to solve the problem without assistance.

74 NOVEMBER 1999 Embedded Systems Programming

D A V I D B . S T E W A R T

f
e

a
t

u
r

e

L

More Pitfalls for
Real-Time Software
Developers
The countdown continues, and the problems get worse. This month we present the top 15
problems real-time software developers face.

Embedded Systems Programming NOVEMBER 1999 75

Unfortunately, this misconception
often leads to the downfall of projects
or quality, as adequate solutions might
never be found. If no one else has
more expertise, the programmer
should teach the material to someone
with less expertise, so that both the
teacher and the student can arrive at a
better understanding of the problem.

Many organizations have new
recruits who are willing to learn new
things to gain experience. Explain to
such eager people how the program
works and what the problem is. They
likely will not be able to fully under-
stand the problem. However, their
questions may expose an issue or
problem that was overlooked and may
lead to a solution.

This approach also has an impor-
tant side effect. It doubles as a training
technique so that when advanced pro-
gramming knowledge is required,
there are more programmers quali-
fied to contribute.

#14 Only a single design diagram
Most software systems are designed
such that the entire system is defined
by a single diagram (or, even worse,
none!). Yet a physical item like a chair
or table would have several more dia-
grams—for instance, top view, side
view, bottom view, detailed view, func-
tional view, and so on—despite the
fact that a chair can be much simpler
than a software project.

When designing software, getting
the entire design on paper is essential.
The most commonly accepted meth-
ods are through the creation of soft-
ware design diagrams. Many different
kinds of diagrams exist. Each is
designed to present a different view of
the system.

Of course, there are good diagrams
and there are poor diagrams. A good
diagram properly reflects the ideas of

the designer on paper. A poor dia-
gram is confusing, ambiguous, and
leaves too many unanswered ques-
tions. To create good software, the dia-
grams representing the software
designs must be good.

Common techniques for present-
ing designs through good diagrams
include the following:

• An architectural design diagram shows
the top-down decomposition of a
large project. It is usually a data
flow diagram that shows relation-
ships between objects, modules, or
subsystems based on the data
exchanged between them

• Each element in an architectural
design should be represented by a
detailed design diagram. This diagram
provides enough detail for a pro-
grammer to implement the details
without ambiguity. In a multi-level
decomposition, the detailed design
at one level may become the archi-
tectural design for the next lower
level. Therefore, the same diagram-
ming techniques are applicable to
both kinds of diagrams

The software designers must be sure
to distinguish whether they’re using
process-oriented or data-oriented designs. A
process-oriented design, as typically
used in many control and communica-
tion systems, should include data flow
diagrams (such as for control system
representation), process flow diagrams
(also called flow charts), and finite state
machines representations.

A data-oriented design, as used in
knowledge-based and database appli-
cations, should consist of relationship
diagrams, data structure diagrams,
class hierarchies, and tables.

An object-oriented design is a combi-
nation of process- and data-oriented
design, and should contain diagrams

that represent all of the different
views.

As an example of the need for dia-
grams, consider the data structures
shown in Figure 1a. If you have an
application with lots of structures
defined, but no diagrams to show the
relationships between them, you
would need to spend hours (or days)
going through the code or relying on
comments (which may or may not be
there) to figure out the relationships.

On the other hand, the data struc-
ture diagram shown in Figure 1b clear-
ly shows this relationship. For exam-
ple, it now becomes obvious that struc-
ture def_t is a doubly linked circular
list with a header node; there are nxyz
instances of the structure xyz_t,
defined as an array; and structure
abc_tpoints to both the header node
of def_t and to the first element in
xyz_t.

#13 No legend on design diagrams
Even when someone has provided
design diagrams, they often haven’t
provided a legend. Such a diagram
usually mixes data flow and process
flow blocks, and is marred by inconsis-
tencies and ambiguities. Even many of
the diagrams in software engineering
textbooks have this problem!

A quick rule of thumb to deter-
mine whether a diagram has flaws is to
look at the legend and make sure that
every box, line, dot, arrow, thickness,
fill color, or other marking on the dia-
gram matches the function specified
in the legend. This simple rule serves
as a syntax checker, allowing develop-
ers and reviewers to quickly identify
problems with the design.
Furthermore, it forces every different
type of block and line and arrow to be
drawn differently, so that different
objects are visually distinguishable.

Diagrams can be drawn according

Most software systems are designed such that the entire system is

defined by a single diagram (or, even worse, none!).

B
E

N

F
I

S
H

M
A

N

top 15
 pitfalls

to a standard such as UML or based on
a custom set of conventions developed
by the company. What’s important is
that for every design diagram, there is
a legend, and that all diagrams of the
same type use the same legend.
Consistency is the key.

Following are guidelines for creat-
ing consistent data flow, process flow,
and data structure diagrams. Similar
guidelines should be established for
any other kind of diagram required by
an application.

Data flow diagrams. These diagrams
show the relationship and dependen-
cies between modules based on the
data that is communicated between
them. These diagrams are most often
used in the modular decomposition
phases. The data flow diagram is the
most common diagram at the archi-
tectural level; but most data flow dia-
grams are poorly done, usually a result
of inconsistencies in the diagram.

To create good diagrams, create a
convention and stick with it. Always
make a legend that explains the con-
vention. Minimize the number of lines
(and therefore, data items) that flow
between processes or modules. Note
that each block in this diagram will
become a module or process, and
each line will be some form of cou-
pling between module or communica-
tion between processes. The fewer
lines, the better.

Some typical conventions for data
flow diagrams include the following:

• Rectangles are data repositories
such as buffers, message queues, or
shared memory

• Rounded-corner rectangles are
modules that execute as their own
process

• Directed lines represent data that
flows from the output of one
process or module to the input of
another process or module

Process flow diagrams. These diagrams
generally show the details within a
module or process. They are most
often used during the detailed design.

As with data flow diagrams, create a
convention, stick with it, and make a
legend that explains the conventions.
Some typical conventions for process
flow diagrams include:

• Rectangles are procedures or com-
putations

• Diamonds are decision points
• Circles are begin, end, or transfer

points
• Directed lines represent the

sequence to execute code
• Ovals represent interprocess com-

munication
• Parallelograms represent I/O
• Bars represent synchronization

points

Data structure diagrams and class hierar-
chies. Data structure diagrams and

76 NOVEMBER 1999 Embedded Systems Programming

FIGURE 1 Many software developers will define data structures, as shown in (a). The design of the software and
interrelationship of the data structures is not obvious unless the code is accompanied by a data structure diagram, as
shown in (b).

(a)

typedef struct _def_t {

struct _def_t *next;

struct _def_t *prev;

char name[8];

short loval;

short hival;

} def_t;

typedef struct _xyz_t {

long i;

float f;

short s[2];

unsigned char b[8];

} xyz_t;

typedef struct _abc_t {

def_t *def;

xyz_t *xyz;

short ndef;

} abc_t;

abc_t

abc_t

= structure abc_t

Legend

= pointer

*def

= field
within a
structure

= zoomed-in view
 of a structure

head name1
*xyz

nxyz

xyz[0]

xyz[1]

xyz[2]

xyz[nxyz–1]

i

•••

f

s[0] s[1]

b[4] b[5]

b[0] b[1]

b[6] b[7]

b[2] b[3]

namendef

def_t

next

prev

name

loval

hival

(b)

top 15
 pitfalls

class hierarchies show the relationship
between multiple data structures or
objects. Such diagrams should contain
enough detail to directly create a
struct (if using C) or class (if using
C++) definition in a module’s .h file.

Some typical conventions for these
diagrams include:

• A single rectangle is a single field
within a structure or class

• Groups of adjacent rectangles are
all in the same structure or class

• Non-adjacent rectangles are in dif-
ferent structures or classes

• Arrows leaving a rectangle indicate
pointers; the other side of the
arrow shows the structure or object
being pointed to

• Solid lines show relationships
between classes. A legend should
indicate the type of relationship(s)
shown in the graph. Each different
type should be represented by a
line of a different width, color, or
type

For example, Figure 1b is a data
structure diagram.

#12 Using POSIX-style device drivers
Device drivers are used to provide a
layer of abstraction to hardware I/O
devices, so that higher levels of soft-
ware can access devices in a uniform,
hardware-independent fashion.
Unfortunately, Unix/POSIX-style
device drivers used in many commer-
cial RTOSes do not fulfill the needs of
embedded system design.

Specifically, the open(), read(),
write(), ioctl(), and close() inter-
faces used by existing systems were cre-
ated for files and other stream-orient-
ed devices. In contrast, most real-time
I/Os have sensors and actuators that
are connected through I/O ports. I/O
ports include parallel I/O bits, analog-
to-digital converters, digital-to-analog
converters, serial I/O, and special pur-
pose processors such as a DSP filtering
data from a camera or microphone.
Trying to adapt the POSIX device dri-
ver API to use these devices forces pro-

grammers to perform the undesirable
practice of coding hardware-specific
functions at the application level.

Consider the following example:
real-time software controlling an
electromechanical device must turn
on two solenoids, which are connected
to bits 3 and 7 of an eight-bit digital
I/O output board, without affecting
the values on the other six bits of the
port. None of the POSIX interfaces
allow a programmer to specify such
functionality.

In practice, three common
approaches are used to map the hard-
ware into this device interface. One
approach modifies the arguments of
the write() routine, such that the
third argument specifies which ports
to write instead of specifying the num-
ber of bytes to transfer. By changing
the definition of the arguments for a
standard API, the ability to use both
that driver and the code that calls it in
a hardware-independent manner is
eliminated, because there is no
guarantee that a different I/O device
driver will specify arguments in the
same manner. What happens if we
want to specify bits 3 and 7 of port 4
on an eight-port I/O board? A differ-
ent definition of the argument would
be required for this board.

A second approach uses ioctl().
The request and value are supplied as
arguments. Unfortunately, no stan-
dards exist for the request, and every
device freely selects its own set of sup-
ported requests. An example of the
problems that result is with setting a
serial port to 9,600 bits per second.
Different device drivers use different
bit-mapped request structures to
implement that function. Conse-
quently, no compatibility exists
between devices that should have the
same hardware abstraction layer.
Therefore, the application programs
that use these devices become device
dependent, and are not usable in a
reconfigurable environment. Fur-
thermore, ioctl() is primarily for use
during initialization, as compared to
read() and write(), because ioctl()

has significantly more overhead in
deciding what is being requested and
converting the arguments to a form
suitable for the request.

A third, quite popular approach is
to use mmap() to map the registers of
the devices. This method allows the
programmer to directly access the
device registers. Although this method
provides the best performance, it
defeats the purpose of using a device
driver to create a hardware-inde-
pendent abstraction of the device.
Code written in this manner is non-
portable, usually difficult to maintain,
and cannot be used effectively in a
reconfigurable environment.

The alternative is to encapsulate
the device driver in its own thread.
The data from the device is trans-
ferred through shared memory (and
not via message passing, as in mistake
#16).1 The device driver is then a sin-
gle process that can be executed
whenever the device is present and
needed, and otherwise not executed.

#11 Error detection and handling are an
afterthought and implemented through
trial and error
Error detection and handling are
rarely incorporated in any meaningful
fashion in the software design. Rather,
the software design focuses primarily
on normal operation, and any excep-
tion and handling are added after the
fact by the programmer. The pro-
grammer either puts in error detec-
tion everywhere, many times where it’s
unnecessary but its presence affects
performance and timing; or does not
put in any error handling code except
on an as-needed basis as workarounds
for problems that arise during testing.
Either way, the error handling isn’t
designed and its maintenance is a
nightmare.

Instead, error detection should be
incorporated into the design of the
system, just as any other state. Thus, if
an application is built as a finite state
machine, an exception can be viewed
as an input that causes action and a
transition to a new state. The best way

78 NOVEMBER 1999 Embedded Systems Programming

to
p

15
 p

it
fa

lls

to accomplish this is still a topic of
research in academia.

#10 No memory analysis
The amount of memory in most
embedded systems is limited. Yet most
programmers have no idea what the
memory implications are for any of
their designs. When they’re asked how
much memory a certain program or
data structure uses, they are common-
ly wrong by an order of magnitude.

In microcontrollers and DSPs, a
significant difference in performance
may exist between accessing ROM,
internal RAM, and external RAM. A
combined memory and performance
analysis can aid in making the best use
of the most efficient memory by plac-
ing the most-used segments of code
and data into the fastest memory. A
processor with cache adds yet another
dimension to the performance.

A memory analysis is quite simple
with most of today’s development envi-
ronments. Most environments provide
a .map file during compilation and
linking stages with memory usage
data. A combined memory/perfor-
mance analysis, however, is much
more difficult, but is certainly worth-
while if performance is an issue.

#9 Configuration information in #define
statements
Embedded programmers continually
use #definestatements in their C code
to specify register addresses, limits for
arrays, and configuration constants.
Although this practice is common, it is
undesirable because it prevents on-
the-fly software patches for emergency
situations, and it increases the difficul-
ty of reusing the software in other
applications.

The problem arises because a
#defineis expanded everywhere in the
source code. The value might there-
fore show up at 20 different places in
the code. If that value must change in
the object code, pinpointing a single
location to make the change isn’t easy.

As an example of an emergency
patch, suppose a client discovers that

for an application, a hard-coded 64ms
timeout period is insufficient, and it
needs to be changed to 256ms. If
#defines were used, the entire applica-
tion would have to be recompiled, or
every instance of that value being used
in the machine language code
patched.

On the other hand, if this informa-
tion is stored in a configuration vari-
able (possibly stored in nonvolatile
memory), then changing the value in
just one place is simple. The code does
not have to be recompiled—at worst,
resetting or rebooting the system is
necessary. The need for recompilation

Embedded Systems Programming NOVEMBER 1999 79

top 15
 pitfalls

prevents in-the-field updates, as users
generally don’t have the means to
recompile and download the code.
Instead, the designers must make the
change and distribute an entirely new
revision of the software.

As an example of software reusabil-
ity, suppose that code for an I/O
device is implemented with every
address of each register #defined.
That same code can’t be reused if a
second identical device is installed in
the system. Instead, the code must be
replicated, with only the port address-
es changed.

Alternately, a data structure that
maps the I/O device registers can be
used. For example, an I/O device with
an eight-bit status port, an eight-bit
control port, and 16-bit data port at
addresses 0x4080, 0x4081, and
0x4082, respectively can be defined as
follows:

typedef struct {

uchar_t status;

uchar_t control;

short data

} xyzReg_t;

xyzReg_t *xyzbase =

(xyzReg_t *) 0x4080;

xyzInit(xyzbase);

etc.

Adding a second device at address
0x7E0 is as easy as adding another vari-
able. For example:

xyzReg_t *xyzbase2 =

(xyzReg_t *) 0x7E0;

xyzInit(xyzbase2);

#8 The first right answer is the only
answer
Inexperienced programmers are espe-
cially susceptible to assuming that the
first right answer they obtain is the
only answer. Developing software for
embedded systems is often frustrating.
It could take days to figure out how to
set those registers to get the hardware

to do what they want. At some point,
though, it works. Once this happens,
many programmers will remove all the
debug code and put that code into the
module for good. Never shall that
code change again. Because it took so
long to debug, nobody wants to break
it.

Unfortunately, that first success is
often not the best answer for the task
at hand. That step is definitely impor-
tant, because improving a working sys-
tem is much easier than getting the
system to work in the first place. But
improving the answer once the first
answer has been achieved is rarely
done, especially for parts of the code
that seem to work fine. Indirectly, how-
ever, a poor design that remains
unchanged might have a tremendous
effect, like using up too much proces-
sor time or memory, or creating an
anomaly in the timing of the system if
it executes at a high priority.

As a general rule of thumb, always
come up with at least two designs for
anything. Quite often, the best design
is in fact a compromise of other
designs. If a developer can only come
up with a single good design, other
experts should be consulted to obtain
alternate designs.

#7 #include“globals.h”
A single #included file with all of the
system’s constants, variable defini-
tions, type definitions, and/or func-
tion prototypes is a sure sign of non-
reusable code. During a code review, it
takes only five seconds to spot code
that cannot be reused, if such a file
exists. The key to spotting these prob-
lems almost immediately is the exis-
tence of an include file, often called
globals.h, but other common names
are project.h, defines.h, and proto-
types.h. These files include all of the
types, variables, #defines, function
prototypes, and any other header
information that is needed by the
application.

Programmers will claim that it
makes their lives much easier because
in every module all they need to do is

include a single .h file in every one of
their .c files. Unfortunately, the cost of
this laziness is a significant increase in
development and maintenance time,
as well as many circular dependencies
(see mistake #18)2 that make it impos-
sible to use any subset of the applica-
tion in another application.

The right way is to use strict modu-
lar conventions. Every module is
defined by two files, the .c and the .h.
Information in the .h file is only what
is exported by the module. Infor-
mation in the .c file is everything that
isn’t exported. More details on enforc-
ing strict modular conventions are
given along with mistake #2.

#6 Documentation was written after
implementation
Everyone knows that the system docu-
mentation for most applications is dis-
mal. Many organizations make an
effort to make sure that everything is
documented, but documentation isn’t
always done at the right time. The
problem is that documentation is
often done after the code is written.

Documentation must be done
before and during coding—never
afterward. Before implementation
begins, start with the detailed specifi-
cation and design documents. These
become the basis for what will ulti-
mately be the user and system docu-
ments, respectively. Implement the
code exactly as in these documents;
anytime the document is ambiguous,
revise the document first. Not only
does this ensure that the document
remains up to date, but it ensures that
the programmer implements what the
document specifies.

Updating documentation during
the implementation also serves as a
review for the code. Programmers
often find bugs in their code as they’re
writing about it. For example, the pro-
grammer may write, “Upon success,
this function returns 1.” The pro-
grammer then thinks, “What if there is
no success… then what is returned?”
He looks at his code and might realize
that the lack of success scenario has

M

M

80 NOVEMBER 1999 Embedded Systems Programming

to
p

15
 p

it
fa

lls

not properly been implemented.

#5 No code reviews
Many programmers, both novices and
experts, guard their code with the
same secrecy that inventors guard
patentable ideas. This practice, unfor-
tunately, is extremely damaging to the
robustness of any application. Usually,
programmers know they have messy
code; hence they fear others seeing
and commenting on it. As a result,
they hide it the same way that children
hide messy rooms from their parents.

To guarantee robustness, formal
code reviews (also called software
inspections) must be performed.
Code reviews should be done regular-
ly for every piece of code that goes
into the system. A formal review
involves several people looking over
code and tracing it by hand on paper.
Software engineering studies have
shown that more bugs can be found in
a day of code reviews than a week of
debugging.

The programmer should also get
into the habit of doing self-reviews.
Many programmers write code, run it,
and see what happens—and if it does
not work, they start debugging it, with-
out ever tracing it on paper. Spending
one day hand-tracing the code can
also save days or weeks of agonizing
debugging.

Code reviews have the additional
positive side effect of increasing the
number of people who understand
the code, thus preventing total
reliance on a single employee.

#4 Indiscriminate use of interrupts
Interrupts are perhaps the biggest
cause of priority inversion in real-time
systems, causing the system to not
meet all of its timing requirements.
The reason for this delay is that inter-
rupts preempt everything else and
aren’t scheduled. If they preempt a
regularly scheduled event, undesired
behavior may occur. An ideal real-time
system has no interrupts.

Many programmers will put 80% to
90% of the applications’s code into

interrupt handlers. Complete process-
ing of I/O requests and the body of
periodic loops are the most common
items placed in the handlers.
Programmers claim that an interrupt
handler has less operating system over-
head, so the system runs better. While
it’s true that a handler has less over-

head than a context switch, the system
doesn’t necessarily run better for sev-
eral reasons:

• Handlers always have high priority
and can thus cause priority inver-
sion

• Handlers reduce the schedulable

Embedded Systems Programming NOVEMBER 1999 81

top 15
 pitfalls

bound of the real-time scheduling
algorithm, thus counteracting any
savings in overhead as compared to
a context switch

• Handlers execute within the wrong
context and for the use of global
variables to pass data to the
processes

• Handlers are difficult to debug and
analyze because few debuggers
allow the setting of breakpoints
within an interrupt handler

Instead, minimize the use of inter-
rupts when possible. For example,
program interrupts so their only func-
tion is to signal an aperiodic server. Or
convert handlers from periodically
interrupting devices to periodic
processes. If you must use interrupts,
use only real-time analysis methods
that take into account the interrupt
handling overhead. Never assume that
overhead from interrupts and their
handlers is negligible.

#3 Using global variables
Global variables are often frowned
upon by software engineers because
they violate encapsulation criteria of
object-based design and make it more
difficult to maintain the software.
While those reasons also apply to real-
time software development, avoiding
the use of global variables in real-time
systems is even more crucial.

In most RTOSes, processes are
implemented as threads or lightweight
processes. Processes share the same
address space to minimize the over-
head for performing system calls and
context switching. The side effect,
however, is that a global variable is
automatically shared among all
processes. Thus, two processes that use
the same module with a global vari-
able defined in it will share the same
value. Such conflicts will break the
functionality; thus, the issue goes
beyond just software maintenance.

Many real-time programmers use
this to their advantage, as a way of
obtaining shared memory. In such a
case, however, care must be taken and

any access to shared memory must be
guarded as a critical section to prevent
undesirable problems due to race con-
ditions. Unfortunately, most mecha-
nisms to avoid race conditions, such as
semaphores, are not real-time friendly,
and they can create undesired block-
ing and priority inversion. The alter-
natives, such as the priority ceiling
protocol, use significant overhead.

#2 No naming and style conventions
For non-real-time system develop-
ment, this mistake is #1.

Creating software without naming
and style conventions is equivalent to
building homes without any building
codes. Without conventions, each pro-
grammer in an organization does his
or her own thing. The problems arise
whenever someone else has to look at
the code (and if an organization prop-
erly does code reviews as in mistake
#5, this will be sooner, not later). For
example, suppose the same module is
written by two different programmers.
The code of one programmer takes
one hour to understand and verify,
while the same code by the other pro-
grammer takes one day. Using the first
version instead of the second is an
800% increase in productivity!

Naming and style conventions are
the primary factors that affect read-
ability of code. If strict naming con-
ventions are followed, a reader will
know what the symbol is, where it is
defined, and whether it is a variable,
constant, macro, function, type, or
some other declaration just by looking
at it. Such conventions must be writ-
ten, just as a legend must appear on a
design diagram, so that any reader of
the code knows the conventions.

An organization should insist that
all programmers use the naming con-
ventions in all parts of their projects.
Part of a code review should include
checking for adherence to the con-
ventions. If necessary, a company can
hold back merit raises from program-
mers who do not follow the conven-
tions; it may seem like a silly reason to
refuse to grant a raise, until you take

into consideration that a programmer
not following the conventions may
cost the company $50,000 the follow-
ing year. If employees prefer to use
their own conventions, that’s their
tough luck. Just as architects must fol-
low strict guidelines to get their
designs approved by the building
inspector, a software engineer should
follow strict guidelines as established
by the company to get their programs
approved by the quality assurance
department.

The most fundamental questions
with respect to software maintainabil-
ity are the following:

• If a customer reports a software
error, how quickly can it be found?

• If a customer requests a new fea-
ture, how quickly can it be added?

• Once the error is identified, how
many lines of code must be
changed to fix it?

Obviously, answers to the above
questions depend on the specific
application and nature of the prob-
lems. However, given two pieces of
code that have the same functionality
and need the same fix, which pro-
gram’s conventions will help do the
job more quickly? These criteria help
to evaluate software maintainability,
and should be used when comparing
not only designs, but also styles and
conventions.

Following is an excerpt of the nam-
ing conventions that are enforced in
the Software Engineering for Real-
Time Systems (SERTS) Laboratory at
the University of Maryland.
Researchers who have learned these
conventions quickly appreciate the
more readable code they produce,
especially after they are forced to read
code written by someone else who
does not follow any written conven-
tion. Whether an organization favors
these conventions or its own doesn’t
matter; what is important is that the
naming conventions can be backed by
a good reason why each specific
convention was selected, they are writ-

82 NOVEMBER 1999 Embedded Systems Programming

top 15
 pitfalls

ten and distributed to all developers,
and they are strictly adhered to by all
programmers.

SERTS naming conventions. Simply cre-
ating modules to achieve a higher
level of software maintainability is not
sufficient. One of the biggest costs in
maintaining software is spending time
trying to figure out what some other
programmer did in his or her code. To
alleviate this problem, an entire orga-
nization must adhere to strict style and
naming conventions. Table 1 gives one
such set of naming conventions that
have already proven themselves to
work well.

Functions should always be given
names such that each exported func-
tion has a converse, as shown in Table
2. Two important benefits are gained
by defining functions in pairs. It forces
the designer to ensure completeness
and allows the designer to create the
two portions simultaneously, using
each part to test the other. It also

ensures that pairings are consistent;
for example, that the converse of send
is not read, and that the converse of
create is not finish(see Table 2). If a
designer is creating the code for read-
ing and writing at the same time, both
pieces of code can be tested by writing
from one process and reading from
the other.

To create software so that further
decomposition can be done quickly if
it’s required, put names in order of
“big to small” for compounded func-
tion names, and not in the order that
they would naturally be read. For
example, if module xyz has a sec-
ondary structure xyzFile_t, then func-
tions that operate on that structure
should be named the following:

xyzFileCreate

xyzFileDestroy

xyzFileRead

xyzFileWrite

and not

xyzCreateFile

xyzDestroyFile

xyzReadFile

xyzWriteFile

Note that the last word for any
function name should be the verb that
represents the action performed by
the function. The middle words are
typically nouns that represent the
object(s) on which the verbs act.

This convention makes it obvious
that xyzFile is a sub-structure of the
xyzmodule. Furthermore, if the mod-
ule xyz grows and the designer
decides to further decompose it, it’s
easy to move the entire xyzFile sub-
structure and corresponding func-
tions to a separate module—say, xyz-
file. A global search and replace of
xyzFile to xyzfilewould result in all
the necessary changes, and within a
few minutes, the decomposition would
be complete. If this naming conven-
tion isn’t followed, revising all of the
names for use in the new module
would take much longer.

While having a short cryptic mod-
ule name is acceptable because the
name serves as a prefix to everything,
you should only use obvious abbrevia-
tions for function names. If an obvious
abbreviation isn’t available, use the
full name. If an abbreviation is used,
use it everywhere for the project.

For example, you might always use
xyzInit as the initialization code for
module xyz, rather than
xyzInitialize. Or you might use
either snd and rcv, or send and
receive, but you shouldn’t mix the
two. Examples of other common
abbreviations include intr for inter-
rupt, fwd for forward, rev for reverse,
sync for synchronization, stat for sta-
tus, and ctrl for control. An abbrevia-
tion like trfm, on the other hand, sup-
posedly short for transform, is not
recommended because the abbrevia-
tion isn’t obvious and readability is
therefore compromised. In such a
case, the function name without
abbreviation, xyzTransform(), would
be a better choice. Uncommon abbre-

84 NOVEMBER 1999 Embedded Systems Programming

TABLE 1 SERTS naming conventions to improve software maintainability for
C-language programs

Symbol Description
xyc.c File that contains code for module ‘xyz’
xyz.h File that contains header info for module ‘xyz’. Anything

defined in this file MUST have an xyz or XYZ prefix, and must
be something that is exported by the module.

xyz_t Primary data type for module xyz. Defined in xyz.h
xyzAbcde_t Secondary type “Abcde” for module xyz. Defined in xyz.h.
xyzAbcde() Function “Abcde” that applies to items of type xyz_t.
XYZ_ABCDE Constant for module XYZ. Must be defined in xyz.h.
XYZ_ABCDE() #define’d macro for module XYZ. Must be defined in xyz.h.
xyz_abcde Exported global variable defined in module xyz. Must be

defined in xyz.c, and declared as extern in xyz.h. Global
variables should be avoided!

_ABCDE Local constant internal to module. Must be defined at top of
_ABCDE_FGH xyz.c. The third version allows the use of multiple words. For

example, _ABCDE_FGH. If just “ABCDE_FGH”, is used, it
implies module “abcde”

abcde Local variable. Must be defined inside a function.Fields within
a structure are also defined using this convention.

_abcde Internal global variable. Must be defined as “static” at top of
xyz.c.

_abcde() Internal function. Must be defined as static. Prototype at top
of xyz.c. Function declared at bottom of xyz.c, after all the
exported functions have been declared.

_abcde_t Internally-defined type. Must be defined at top of xyz.c.
abc_e An exported enumerated type for module abc. Each entry of

the enumerated type should defined using the same
conventions as a constant.

to
p

15
 p

it
fa

lls

viations are difficult to follow when
reviewing the code. Using the slightly
longer names is much better and
avoids confusion as to what the func-
tion does.

#1 No measurements of execution time
Many programmers who design real-
time systems have no idea of the exe-
cution time of any part of their code.
For example, my colleagues and I were
asked to help a company identify occa-
sionally erratic behavior in its system.
From our experience, this problem is
usually a result of a timing or
synchronization error. Thus our first
request was simply for a list of process-
es and interrupt handlers in the sys-
tem, and the execution time in each.
The list of names was easy for them to
generate, but they had no measured
execution times; rather, only estimates

by the designers before the code was
implemented.

Our first order of duty was to mea-
sure the execution time for each
process and interrupt handler. We
quickly discovered that the cause of
the erratic behavior was system over-

load. Engineers at the company
replied that they already knew that.
But they were surprised to hear that
the idle process was executing over
20% of the time. (When measuring
everything, you must include the idle
task.) The problem was that their exe-
cution time estimates were all wrong.
One interrupt handler, with estimated
execution time of a few hundred
microseconds, took six milliseconds!

When developing a real-time sys-
tem, measure execution time every
step of the way. This means after each
line of code, each loop, each function,
and so on. This process should be
continuous, done as often as testing
the functionality. When execution
time is measured, correlate the results
to the estimates; if the measured time
doesn’t make sense, analyze it, and
account for every instant of time.

Embedded Systems Programming NOVEMBER 1999 85

TABLE 2 Examples of always
defining functions in pairs

xyzCreate xyzDestroy
xyzInit xyzTerm
xyzStart xyzFinish
xyzOn xyzOff
xyzAlloc xyzFree
xyzSnd xyzRcv
xyzRead xyzWrite
xyzOpen xyzClose
xyzStatus xyzControl
xyzNext xyzPrev
xyzUp xyzDown
xyzStop xyzGo

top 15
 pitfalls

Some programmers who do mea-
sure execution time wait until every-
thing is implemented. In such cases,
there are usually so many timing prob-
lems in the system that no single set of
timing measurements will provide
enough clues as to the problems in the
system. The operative word in real-time
system is time.

Evaluate your methods
Over two issues I have presented the
30 most common problems in real-
time software development.
Correcting just one of these mistakes
in a project can lead to weeks or
months of savings in manpower (espe-
cially during the maintenance phase
of a software life cycle) or can result in
a significant increase in the quality
and robustness of an application. If

many of your mistakes are common
ones, and you can find and fix them,
potential company savings or addi-
tional profits can be in the thousands
or millions of dollars.

For each mistake listed, I encour-
age you to ask yourself about your cur-
rent methods and policies, compare
them to the reported mistakes and the
proposed alternatives, and decide for
yourself if there are potential savings
for your project or company. I expect
you’ll find potential for improved
quality and robustness at no extra cost,
just by modifying some of your current
practices. esp

Dr. David B. Stewart is an assistant pro-
fessor at the University of Maryland. He
earned his PhD in computer engineering
from Carnegie Mellon University. He now

teaches and consults in the area of real-time
embedded software. He has led large stu-
dent projects, including the Pinball
Machine Project that was demonstrated in
Las Vegas, and the Computer-Controlled
Electric Train project that received an hon-
orable mention in the 1998 Motorola
University Design Contest. His research
focuses on next generation RTOS and mid-
dleware technology to support the rapid
design and analysis of dynamically recon-
figurable real-time software. You can reach
him by referencing his home page at
www.ece.umd.edu/~dstewart.

References
1. From Part 1, October 1999, p. 40: #16

Using message passing as primary inter-

process communication

2. From Part 1, October 1999, p. 38: #18

Too many inter-module dependencies

86 NOVEMBER 1999 Embedded Systems Programming

	back: <BACK

