
Abstract: We present a time-bounded state-based communi-
cation mechanism for dynamically reconfigurable embedded
systems. The mechanism is a single-processor, low-overhead
version of the Chimera state-variable mechanism, that was
developed for state-based communication in multi-processor
environments. The new design is suitable for execution on
low-performance embedded processors, uses less memory,
and supports dynamic binding, one-to-one, one-to-many, and
broadcast capabilities in a time-deterministic manner.
1. Introduction

The Chimera Project [4] demonstrated the use of state-
based communication to create dynamically reconfigurable
real-time software objects for a multiprocessor environment.
Its state variable (SVAR) mechanism provides the user with
operating system services that support transparent time-
bounded inter-processor communication for high assurance
control systems. The mechanism is fully deterministic, and
has guaranteed worst-case waiting and transfer times for
shared data. In conjunction with Chimera’s port-based object
model of real-time software components, it improves predict-
ability and performance by minimizing inter-object depen-
dencies as compared to message-based systems. The
mechanism also supports dynamic binding, one-to-one, one-
to-many, and broadcast capabilities.

The SVAR model of communication is also suitable for cre-
ating dynamically reconfigurable software for embedded
systems [6]. The characteristics of embedded systems intro-
duce different challenges into the design of an SVAR mecha-
nism, as compared to Chimera’s version. In particular,
embedded systems usually use lower performance processors
with less flexibility, have significant memory and CPU band-
width limitations, and timing constraints are often more rigid
than those allowed in a multiprocessor environment. The
binding of communicating objects must also be fast and time-
bounded to support dynamic reconfigurability.

Although the Chimera mechanism is very effective for
meeting its goals in a multiprocessor environment, it has sev-
eral shortcomings when applied to embedded systems. Its
usage of memory is inefficient, as the local table is a duplicate
of the global table, even though a process accesses only a
small subset of it. It has larger overhead for locking the table,
due to its multiprocessor support. The analysis of the mecha-
nism is specific to a VMEbus hardware environment. Chi-
mera’s mechanism is also specific to its port-based object

model, and only supports two pre-programmed operations,
one for reading, one for writing.

By redesigning the mechanism, we have made improve-
ments that address all of the above shortcoming, making the
SVAR communication practical for embedded systems. The
mechanism has also been decoupled from the internals of the
Chimera Real-Time Operating System [5], allowing it to be
ported to any environment.
2. Background: State-Based vs. Message-Based Systems

State-based communication is preferred in embedded sys-
tems to provide higher assurability. In a message-based sys-
tem, processes are often synchronous and aperiodic, making
real-time scheduling analysis difficult. There is significant
overhead in sending and receiving messages, and processes
waiting for data might block for an undetermined amount of
time. Crucial messages can also get lost, as a result of buffer
overflow if processes don’t all execute at the same frequency.
Control systems also have many feedback loops; sending
messages in such an environment creates a risk for deadlock.

In contrast, a state-based system uses structured shared
memory, such that communication has less overhead. The
most recent data is always available to a process when the
process needs it. Streenstrup and Arbib developed the port-
automaton theory to formally prove that a stable and reliable
control system can be created by only reading the most recent
data [3]. Costly blocking is eliminated by creating local cop-
ies of shared data, to ensure that every process has mutually
exclusive access to the information it needs.

Converting control systems from message-based communi-
cation to state-based communication is generally straightfor-
ward. We demonstrate this by example.

Example: A train control system has independent control of
every brake to maximize train handling. To minimize stopping
distance when coming to a full stop, all the brakes on the train
must be applied together. The input/output (I/O) logic for
each brake is handled by a separate process; the control mod-
ule must inform each brake module to turn on the brakes.

Figure 1 shows the solution using a message-based system
(e.g. [1]). The controlling unit sends a message, “apply
brake”, to every brake process. This approach has high com-
munication overhead, potential loss of messages if tasks exe-
cute at different frequencies, non-deterministic blocking, a
separate copy of the message for every process, and there
exists the possibility of deadlock. Due to the dependencies
among processes, it creates a real-time system that is difficult
to analyze and is not suitable for reconfigurable systems [4].

In a state-based communication mechanism, the brake sys-
tem is represented by a global state variable in shared mem-
ory. It can be either OFF or ON, as shown in Figure 2. Each
brake module executes periodically, and monitors this vari-
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able to update the state of its own brake I/O. Since processes
are periodic, a schedulability analysis is easier. Processes
only need to bind to a single element in the state variable
table, thus eliminating direct dependencies between pro-
cesses. Communication through shared memory also incurs
less overhead as compared to a message-passing system.

To ensure the integrity of the data, it is necessary to synchro-
nize access to the shared memory. A common solution is to
use semaphores, as shown by the mutex variable. However,
using semaphores significantly increases overhead, poten-
tially incurs additional blocking which lowers the schedulable
bound of a real-time task set, and if not carefully used, can
lead to priority inversion, starvation, or deadlock [2]. The use
of semaphores thus eliminates the advantages of using a state-
based system as opposed to a message-based system.

The priority ceiling protocol [2] can help minimize the
blocking time and prevent deadlocks. Implementation of the
protocol, however, still has significant overhead and poten-
tially long blocking times for lower-priority processes.

The Chimera Project addressed these issues in the design of
its SVAR mechanism. Chimera’s SVAR mechanism uses a
two-level shared memory structure, as shown in Figure 3.
Shared data is stored in the global table. Processes, however,
only access the data in the local tables. At the beginning of a
process’s cycle, the most recent data is always available, as
per the port-automaton theory [3]. Only at the end of each
cycle is newly created data updated in the global table. Trans-
fers between the global and local table occur only when the

process is not using the local data. The software framework
for Chimera’s port-based object, as detailed in [4], ensures
that the communication occurs at the proper times.

Integrity of the data is achieved by using a combination of
spin-locks on a global lock, and locking the local CPU, rather
than using semaphores. The solution is suitable for a multi-
processor environment, and spinning on a lock eliminates the
high overhead blocking time, replacing it with small amounts
of waiting time. From a theoretical perspective, locking the
CPU would cause implicit priority inversion. However, con-
sidering the practical aspects of real-time operating systems,
where the CPU is often locked for extended amounts of time
(e.g. for context switch), this method does not reduce the pre-
dictability of a system when data transfers are small. A
detailed real-time analysis of SVAR communication for task
sets which use this mechanism is given in [4]
3. SVAR Mechanism for Embedded Systems

The SVAR mechanism for embedded systems is similar to
Chimera’s mechanism shown in Figure 3. Our key contribu-
tions are a new design which uses less memory, eliminates the
spin-lock in a single-processor environment, and decouples
the mechanism from the real-time operating system (RTOS),
allowing it to easily be integrated with any RTOS.

An architectural view of the SVAR mechanism is shown in
Figure 4. In order to demonstrate the use of the mechanism,
an example from Chimera is shown in Figure 5 (from [4]).
Port-based objects communicate using state variables to form
a control loop for a robotic manipulator. A more detailed look
at the contents of the global and local tables is shown in
Figure 6. No synchronization is needed to access the local
table, since only a single process has access to it. Mutual
exclusive access is only needed when a process exchanges
information between its local table and the global table. 

In a single-processor environment, the synchronization can
be obtained by locking the CPU, assuming the amount of data
to be transferred is small. It has been argued that locking the
CPU leads to possible missed deadlines or priority inversion.
This would be true in the ideal case where a CPU has no oper-
ating system overhead. However, considering the practical
aspects of preemptive real-time operating systems, it is not
unusual that a real-time microkernel, on an embedded low-
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performance processor, locks the CPU for 100 µsec in order
to perform a system call such as a full context switch [5]. If
the total time that a CPU is locked in order to transfer state
variables is less than the worst-case locking of the microker-
nel due to operating system functions, then there is no addi-
tional effect on the predictability of the system. Only the
worst-case execution time of that task must be increased by
the transfer time, and that can be accounted for in the sched-
uling analysis. As shown in Section 4, the worst-case locking
and transfer times are not only bounded, but can be estimated
accurately based on the number on inputs and outputs for a
module.

An assumption that we make is that the volume of data
stored in by the SVAR is small, which is the case in most
embedded systems. One notable exception in which this
assumption does not hold is for images. Vision applications
can easily require several megabytes of data. The SVAR
mechanism is not suitable for transferring such large volumes
of data. However, once a vision subsystem detects specific
points, edges, or objects, that low volume data can be trans-
ferred using the SVAR mechanism.

The remainder of this section provides details of the pro-
grammer interface, internal data structures of the mechanism,
and details for creating and initializing the mechanism.
3.1  Programmer Interface

The contents of the global state variable table are specified
in a configuration file, called the .svar file. This file can either
be created manually by the programmer (generally for testing
purposes) or automatically generated by a higher level inter-
face based on the needs of an application. The information
from this file is condensed and stored in binary and stored on
the embedded system’s EPROM or flash memory. A sample
entry in the .svar file for the variable xr is shown in Figure 7.

The state variable is created using svarCreate(), with the
.svar file data passed as an argument. A global shared mem-
ory segment is dynamically allocated. Any task can then call
svarAttach() to attach to a previously created table, at which
time the data structures for an empty local table is created.

The svarTranslate() routine is called by a process to add a
variable to the local table and translate its symbolic name into
physical pointers to the data. The programmer can then use
the local pointers indiscriminately during the main body code
of the process. The svarTranslate() routine is typically only
called during the initialization of a process.

The data in the local SVAR table can be updated at any time
by performing either svarRead() for a single-variable update
or svarMultiRead() for a pre-programmed multi-variable
update. Similarly, the svarWrite() and svarMultiWrite() rou-
tines can be used for updating the global table based on the
values in the local table. For the multi-variable updates,
svarProgram() routine must first be used (usually during ini-
tialization) to program the list of the state variables that
should be copied to or from the local table before using svar-
MultiRead() or svarMultiWrite() routines.

There is no error checking inside the svarRead() and svar-
MultiRead() routines. The svarWrite() and svarMultiWrite()
routines can optionally perform range checking if the mini-
mum and/or maximum values of a state variable are provided
in the .svar file.

Binding is performed using the symbolic names of SVARs.
If two modules want to communicate, but internally they used
different names, an SVAR alias can be created, which simply
gives an a new name to an existing variable. This feature is
necessary for component-based software assembly, where the
input and output ports of different modules could be defined
independently, even if they must communicate. Aliases are
created using the svarAlias() command.

When a local SVAR is no longer needed, svarUntranslate()
is called to remove it from the local table. When a task no
longer needs access to the SVAR table, it performs an svarD-
etach(), which frees the memory used for the local table. The
global table is only freed when all processes have detached,
and a process performs an svarDestroy().
3.2  Data Structures

The design of the data structures for the local and global
table are one of the keys to ensuring minimal overhead,
bounded transfer times, and efficient dynamic binding for the
embedded SVAR mechanism.

The data structures used for storing data in local and shared
memory are designed especially to support dynamically
reconfigurable software. All declarations, memory allocation,
and bindings are performed at run-time, so that software com-
ponents can be created independently of each other, yet still
be able to communicate.

The data structures are shown in Figure 8. (a) shows the
structure for the global table, (b) shows the structure for the
local table, and (c) shows the structure of an individual
SVAR. Definitions of the fields of the data structures are
given in Tables 1, 2, and 3 respectively. Each structure is
described in more detail below.
3.3  Global SVAR Table

The data structure for the global SVAR table is stored in
shared memory. It contains the union of SVARs of all the
modules that can be configured into the system. The table
consists of a header section and variable segments. The
header provides information about the table, and each vari-

Table 1. Data structure fields of global SVAR table

Field Description
name symbolic name of the table
nvar number of variables defined in global table
totalsize total size of the table in bytes
varoff-
set

offset to the variable segment in bytes 

Table 2. Data structure fields of local SVAR table

Field Description
name symbolic name of the table
nvar number of variables
varlist pointer to the variables data structure
shmtabl
e

pointer to the global table

copylist  list of pre-programmed copies 
nalias number of aliases defined
aliaslist pointer to the list of aliases
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able segment contains the global copy of an SVAR. The data
in the variable segment is the same as the copy that is stored
in the local table, and is described in Section 3.5

The global table is created dynamically when svarCreate()
is called, as a contiguous block. Its structure remains
unchanged during the lifetime of the table. Other processes in
the system use the symbolic name of the table to attach to it
using svarAttach(), which returns a pointer to the local table.
A process cannot directly access the global table.

If the underlying RTOS does not support a uniform address
space among all processes, then the shared segment might be
mapped to different portions of each task’s address space. As
a result, all of the pointers within the global structure are
stored as offsets, relative to the base of the shared segment.

The global structure is very similar to the data structure used
in Chimera. The local structure, however, is very different.
3.4  Local SVAR Table

Unlike the global table, the local table is dynamic: different
parts can be added and deleted during its lifetime.

In Chimera the local table is a duplicate of the global table,
although each task accesses only a small subset of SVARs. To
minimize memory requirements in our new design, varlist,
copylist, and aliaslist are initially empty. SvarTranslate()
adds a node to varlist; svarProgram() adds a node to copylist,
and svarAlias() adds a node to aliaslist. 

When SvarTranslate() creates a new node, it copies the data
from the global table, and returns a pointer to the newly cre-
ated local data. The process can then use the local data at any
time. The svarRead() and svarWrite() routines are used to
update the local and global tables respectively.

Nodes in varlist are also passed to svarProgram(), to pre-
program a multi-variable copy. A copylist pointer is returned
by svarProgram(), which is used by svarMultiRead() or svar-
MultiWrite() to initiate a multi-variable transfer.

Varlist, copylist, and aliaslist are generally created during
the initialization of a process, thus the time to create the data
structure is not a primary issue. The different nodes on these
lists, however, provides quick access to the information
needed during time-critical execution, to minimize the com-
munication overhead. An analysis of the overhead, and sam-
ple performance benchmarks, are given in Section 4.

3.5  State Variables

As shown in part (c) of Figure 8, each SVAR has a common
set of header information, followed by the data. In addition to
the current value, both the local and global tables can also
store the initial, minimum, and maximum values of that par-
ticular SVAR. This information is useful primarily for error
checking and handling. Our embedded SVAR mechanism
supports automated range checking, but due to space limita-
tions it is not described in this paper. Valueptr, initptr, minptr,
and maxptr are all available to the process, so that it can have
direct access to the SVAR’s data.

Header information such as type, desc, units, and nelem, are
available to processes so they can obtain information about
the SVAR to which it is attached. A process can verify these
fields during initialization to ensure that the variable is indeed
the correct one. Incorrect bindings can occur if the configura-
tion manager or application designer uses the same variable
name in two different processes to mean two different things.
The problem can easily be remedied by using svarAlias() to
locally change the name of one of them.
4. Analysis of SVAR mechanism

The SVAR mechanism was implemented and tested on an
embedded system running QNX RTOS. The only RTOS-
dependent code is to lock() and unlock() the CPU, and an
interface to create a single shared memory segment. Since
these features are available on most RTOS, porting the mech-
anism is simple.

To ensure predictable communication, the time required for
transferring data between the local and global tables for each
task must be computed. Let tI be the time required to transfer
input variables from the global to the local table, and tO be the
time required to transfer output variables from the local to the
global table, assuming no waiting for another process that has
already locked the CPU. tI and tO are computed as,

(1)

(2)

where Tov is the overhead for locking and unlocking the CPU,
excluding waiting time for the lock; Txfer is the overhead of
reading/writing each additional variable; nI/nO are the num-
ber of input/output variable of the task; xi/yi are the number of
transfers required for input/output variables of the task; and
R(x) is the time required for x transfers.

Tov, Txfer,, and R(x) are dependent on the speed of the hard-
ware. These values can be measured initially for each type of
hardware supported to estimate the communication times. As
an example, Tov, Txfer, and R(x) were measured for both an
embedded 100 MHz 486 and, to demonstrate the performance
on a low-performance processor, on an original IBM PC with
4.77 MHz 8088. The results of our measurements are shown
in Table 4. 

Note that for the 486, the value of R(x) is non-linear. This is
due to the structure of the blockcopy() routine, which transfers
multiples of 4 bytes in 16-byte blocks. If the transfer is not a
multiple of block size, an additional overhead results for the

Table 3.  Data structure fields for state variables.

Field Description
name symbolic name of the variable
desc a symbolic description of the variable
units unit of the variable
flags specifies the type of check facility
type type of the variable
typesize sizeof(type)
nelem number of elements of the variable: 1 scalar, 1< 

vector
next pointer to the next variable
size total size occupied by all the elements of the

variable
valueptr pointer to the value of the variable
initptr pointer to the initial value specified in .svar file
minptr pointer to minimum values specified in .svar file

tI Tov= nI Txfer R xi( )
i 1=

nI

∑+⋅+

tO Tov= nO Txfer R yi( )
i 1=

nO

∑+⋅+



incomplete block. This overhead is incorporated into the time
for the raw data transfer time. Thus, the blockcopy() routine
has a better time per data transfer for larger blocks of data. On
the 8088 with an 8-bit bus, however, the block-copying does
not provide any additional advantage for larger transfers. The
overhead per variable on a multi-variable transfer, however,
is still much lower on the 8088 as compared to doing only sin-
gle-variable transfers.

Execution time for different transfer sizes can be estimated
through interpolation, and measurements of R(x) for different
values of x can give more accurate results. However, for pur-
pose of discussion, the above values are sufficient. 

The values in Table 4 can be substituted into equations (1)
and (2) to estimate the transfer times for each process. We
conducted an experiment using the sample configuration that
was shown in Figure 5 to verify the above analysis. As can be
seen in Table 5, the estimated and the actual values are suffi-
ciently close to use the estimates in real-time scheduling anal-
ysis. This aspect is important since it is not desirable, and
perhaps not feasible, to measure the execution time of com-
munication for every module on every type of hardware.

Until now, all measurements and analysis assumed the ideal
case where there is no contention for accessing the global
table. If multiple tasks are attempting to obtain the lock, the
one with the highest priority succeeds. Only one task can
request the lock at once. Next, we will compute the worst-
case waiting time for locking the CPU by any task.

Let Lpj be the time that task p with priority j locks the CPU.
Thus, Lpj = max(tI, tO). During this time the interrupts are dis-
abled and task p can transfer data without any interruption.
After releasing the lock, the remaining tasks compete to
obtain the lock. 

Let Wj be the worst-case waiting time for a task with priority
j. Since this is the waiting time not blocking time (a waiting
task is in the running state, a blocked task is suspended) Wj
can be added to the worst-case execution time of a task. It is
computed as

(3)
where WjLO is the maximum waiting time for a task with
lower priority, and WjHI is the maximum waiting time for
tasks with priority j or higher.

WjLO is computed as the largest time any single task with
priority lower than j may hold the lock. Therefore,

(4)

To compute WjHI, in the worst-case scenario, all tasks with
priority j or higher may require the lock at the same time.
Thus, task p have to wait for all other tasks to finish their data
transfer to/from the global table, before it can obtain the lock.
WjHI is computed as the sum of the waiting times for all tasks
with priority of j or higher

(5)

The notation tI, ki is the same as tI, where k is the task ID and
i is the priority of the task.

The computation of Wj shows that it is preferable for tasks
producing high volumes of data to be assigned the lowest pri-
ority since it significantly reduces WjHI. This is usually not a
problem, because in many embedded systems, the highest fre-
quency tasks produce the least amount of data, and are exe-
cuted at highest priority according to the rate-monotonic
algorithm.
5. Summary

In this paper, we present a time-bounded mechanism for
state-based communication in dynamically reconfigurable
embedded systems. Predictability, low overhead, dynamic
binding and high reliability are among the contributions of the
state variable table mechanism we developed. Detailed anal-
ysis and performance measurements are also provided.
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Table 4. Breakdown of Transfer Times and 
Communication Overheads
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Execution Time 
(µsec)
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name in
Equation

s
8088

4.77MHz
80486

100MHz
locking CPU 3 0.6
unlocking CPU 4 0.6
block copy subroutine 
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38 3.9

raw data transfer, 1 float 19 0.5 R(1)
raw data transfer, 6 floats 115 1.9 R(6)
raw data transfer, 32 floats 557 4.8 R(32)
raw data transfer, 256 
floats

4550 25.0 R(256)

Table 5. Comparison of Estimated and Actual Transfer Times 
on 100MHz 486 for Configuration in Figure 5
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