
A Study of the Applicability of Existing
Exception-Handling Techniques to
Component-Based Real-Time Software
Technology

JUN LANG and DAVID B. STEWART
University of Maryland

This study focuses on the current state of error-handling technology and concludes with
recommendations for further research in error handling for component-based real-time
software. With real-time programs growing in size and complexity, the quality and cost of
developing and maintaining them are still deep concerns to embedded software industries.
Component-based software is a promising approach in reducing development cost while
increasing quality and reliability. As with any other real-time software, component-based
software needs exception detection and handling mechanisms to satisfy reliability require-
ments. The current lack of suitable error-handling techniques can make an application
composed of reusable software nondeterministic and difficult to understand in the presence of
errors.

Catagories and Subject Descriptors: D.2.3 [Software Engineering]: Coding Tools and
Techniques; D.2.6 [Software Engineering]: Programming Environments; D.2.10 [Software
Engineering]: Design; D.3.3 [Programming Languages]: Language Constructs and Fea-
tures; D.4.1 [Operating Systems]: Process Management; D.4.7 [Operating Systems]:
Organization and Design—real-time systems and embedded systems; D.4.8 [Operating Sys-
tems]: Performance; D.4.9 [Operating Systems]: Systems Programs and Utilities

General Terms: Design, Languages, Performance, Standardization

Additional Key Words and Phrases: Component-based software, error detection and handling,
faults, reconfigurable software, signals, survey, timing and deadline failures

1. INTRODUCTION

Component-based software is becoming increasingly popular as a means of
rapidly creating real-time applications by assembling software building
blocks [Bihari and Gopinath 1992; Gertz et al. 1995; Schneider et al. 1995;

Authors’ addresses: Department of Electrical Engineering, Institute for Advanced Computing
Studies, University of Maryland, College Park, MD 20742; email: {jlang; dstewart}@eng.
umd.edu.
Permission to make digital / hard copy of part or all of this work for personal or classroom use
is granted without fee provided that the copies are not made or distributed for profit or
commercial advantage, the copyright notice, the title of the publication, and its date appear,
and notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to
republish, to post on servers, or to redistribute to lists, requires prior specific permission
and / or a fee.
© 1998 ACM 0164-0925/98/0300–0274 $5.00

ACM Transactions on Programming Languages and Systems, Vol. 20, No. 2, March 1998, Pages 274–301.

Stewart et al. 1992b]. The focus of developing component-based software
has been on the structure of initialization and normal operation code, with
little thought given to exception handling. Research into exception han-
dling, on the other hand, has targeted errors in non-real-time systems.
There has hardly been any research into exception handling for component-
based real-time software (CB-RTS).

This study on exception handling is a step in our research toward
creating a software framework for CB-RTS [Stewart et al. 1997]. The key
contributions of this study are the following:

—Identification of the primary limitations to using existing exception-
handling techniques in CB-RTS. The limitations include lack of time-
bounded handler determination, no support for external handling, lack of
any form of criticality management, and no suitable exception specifica-
tion for operating-system-based mechanisms.

—Identification of existing exception-handling techniques, relating to ex-
ception representation, handler binding, exception raising, information
passing, handler scope, and resource cleanup, that can be used in
CB-RTS.

—A comprehensive survey that compares and contrasts exception-handling
techniques used in programming languages and operating systems. The
survey details are suitable for any software designer and are not limited
to programmers of component-based real-time systems. We conclude that
an exception-handling mechanism suitable for CB-RTS is likely a hybrid
between a programming-language-based mechanism and an operating-
system-based mechanism.

Brief background information regarding exception handling, component-
based software, and real-time systems is given next, followed by the details
of our study.

2. BACKGROUND

Authors of different exception-handling mechanisms have their own defini-
tions of exceptions. Goodenough [1975a; 1975b] defines exception conditions
as those brought to the attention of the operation’s invoker, which becomes
part of normal exit or return. Gehani [1992] defines exception as an error or
an event that occurs unexpectedly or infrequently, which includes an error
or a signal. Cui [1989] defines exceptions as implementation insufficiencies,
which exclude software errors, unanticipated program conditions, domain
failures, and range failures. The most commonly accepted definition of
exception, that we use in this study, is the union of “error,” “exceptional
case,” “rare situation,” and “unusual event.” The entity that is raising an
exception stops and waits for the completion of the exception processing.

In real-time systems, errors are typically categorized as follows [Cox and
Gehani 1989; Stewart et al. 1997]:

Real-Time Software Technology • 275

ACM Transactions on Programming Languages and Systems, Vol. 20, No. 2, March 1998.

—Software errors are caused by design oversights or implementation
mistakes in the software. They are also called design errors and infor-
mally called “bugs.” Dividing by zero, attempting to access an array
element through an index that is too large or too small, incorrectly
implementing a mathematical equation, failure to identify a special case
that needs special processing, or incorrect loop exit conditions are exam-
ples of software errors.

—Hardware errors involve the failure of the underlying hardware. Exam-
ples are unintentional halting of a processor in a multiprocessor system,
a sensor sending incorrect data, and a memory parity error.

—State errors result from the difference between the system’s perception of
the external environment and the actual environment. State errors are
also called external status errors. For instance, a robotic manipulator is
carrying a pencil, but the pencil drops. A state error occurs because the
internal state says “robot has pencil” while in reality the robot is not
holding the pencil.

—Timing errors occur when operations do not satisfy the timing constraints
imposed in a real-time system. Missing a deadline and using more CPU time
than reserved in the worst case are examples of timing errors.

Exceptions are usually divided into two classes [Cristian 1982; Goodenough
1975a]: predefined and user-defined. Predefined exceptions are declared im-
plicitly and are associated with conditions that are detected by the underlying
hardware or operating system; they are also called system-defined exceptions.
User-defined exceptions are defined and detected at the application level.

A signal is a notification of an event and may occur frequently; the
signaler does not usually wait for the completion of the signal handling.
Examples of signals include timer expiration and a request to kill a
process. In this survey signals are not considered exceptions.

Exception handling is the immediate response and consequent action
taken to handle the exceptions. An exception handler is the code attached to
(or associated with) an entity for one or several exceptions and is executed
when any of these exceptions occur within the entity. Depending on the
exception-handling mechanism, an entity can be a program, a procedure, a
statement, an expression, an object, or data. Note that fault tolerance
[Pradhan 1996] is not included within the definitions of exception handling
and has not been investigated by this study.

2.1 Exception Handling in C and UNIX

Perhaps the most common form of exception-handling method used by
software programmers is the “return-code” technique that was popularized
as part of C and UNIX, as shown in the following example:

if ((fd 5 open(filename, O_RDONLY)) 55 21) {
fprintf (stderr, “Error %d opening file %s\n”, errno, filename);
exit();

}

276 • Jun Lang and David B. Stewart

ACM Transactions on Programming Languages and Systems, Vol. 20, No. 2, March 1998.

Most general-purpose operating systems and real-time operating systems
(RTOS) such as Solaris 2.x, VxWorks, VRTX, and QNX still use this
method, especially for errors within system calls.1 Although this technique
is the most popular, it has many major drawbacks:

—Error Prone: Checking return values by if-statements is easy for pro-
grammers to ignore. If the programmer forgets to check a function, errors
may enter the system unexpectedly and show up later. For instance, how
often does a program check the return value of printf()? More impor-
tantly, if a layer of the software fails to check the condition, every trace of
the error may be lost. This problem causes hard-to-detect bugs.

—Poor Modular Decomposition: The main execution thread of the operation
is mixed with if-statements and error-handling code. As a result, neither
the main operation code nor the exception-handling code can be easily
understood and maintained. In some cases, it is not even possible to
distinguish which parts of the code are specifically for exception han-
dling, and which are not.

—Poor Testability: It is difficult to analytically verify that every possible
error has a known handler, and it is hard to test every scenario in a
systematic manner.

—Inconsistency: The return value which denotes error is inconsistent. Some
functions return NULL to indicate errors while others use 21. In some
cases, the type of the return value of a function must be changed just to
accommodate the error code. For example, the function getc() is defined
to return a value of type int instead of char just to be able to return 21.

—Lack of Information: Any additional data crucial to handling exceptions
must be passed outside the return code method. Usually global variables
such as errno in UNIX/C must be used. This in turn complicates the
design of multithreaded systems and reduces the reusability of software
modules. For debugging purposes, no information where the error oc-
curred in the code is passed to the caller.

Addressing the weaknesses of the return-code error-handling method has
fueled the research into exception-handling mechanisms. An overview of
these other mechanisms is given next.

3. OVERVIEW OF CURRENT EXCEPTION-HANDLING MECHANISMS

This study focuses only on mechanisms used at the system software level.
This includes techniques embedded into both programming languages and
operating systems. The study does not consider mechanisms defined at the
hardware level [Thekkath and Levy 1994], nor techniques used internally by
applications as a layer above the system software level [Strong and Miller
1995].

1Information regarding VxWorks can be obtained at http://www.wrs.com/products/html/
vxwks52.html; regarding VRTX at http://www.microtec.com/products/vrtx.html; and regarding
QNX at http://www.qnx.com/product/qnxrtos.html.

Real-Time Software Technology • 277

ACM Transactions on Programming Languages and Systems, Vol. 20, No. 2, March 1998.

We classify exception-handling mechanisms into two categories: pro-
gramming-language-based and operating-system-based, as shown in Table
I. A programming-language-based mechanism is the exception handling
defined by a programming language and implemented by the language’s
compiler. An operating-system-based mechanism uses library or system
calls provided by the operating system. Each mechanism has its own
merits. The advantage of one mechanism is often the disadvantage of the
other; thus design compromises are often necessary.

A program using a programming-language-based method can be ported to
all platforms that support this language. Since programming-language-
based mechanisms provide special syntax for exception handling, and many
people prefer special syntax rather than system calls, programming-lan-
guage-based mechanisms are often considered to have better readability
than operating-system-based mechanisms.

Code that uses an operating-system-based mechanism may be less porta-
ble to a different platform; the part that is not portable is difficult to
rewrite in the absence of a similar exception-handling facility. And because
operating-system-based mechanisms are not integrated into the program-
ming language, no static checking can be performed.

Programming-language-based methods typically cannot handle all excep-
tions uniformly [Lindsay 1977]. For example, if an error occurs in a system
call or by code written in a different language, the exception cannot be caught
directly by the language’s facility. Therefore, the error cannot be handled in
the same way as exceptions raised by the language’s own mechanism. The
programmer is forced to use the method provided by the operating system or
other language to detect and handle the exception. The handling action is
often to raise again the exception using the language’s own facility.

In contrast, operating-system-based mechanisms can handle exceptions
occurring in both the system and application levels and can provide
consistent exception-handling methods. These handling methods are inde-
pendent from programming language implementations and thus can pro-
vide compatibility among programs written in different languages.

More details of the trade-offs between programming language and oper-
ating system mechanisms are considered in Section 5.

There are too many exception-handling mechanisms proposed or imple-
mented to describe them all in depth. Instead, we choose to study in detail
a representative and influential set of exception-handling mechanisms that
demonstrate the many different approaches. They are listed in Table II. At
the base of this table is a list of other mechanisms that we considered, but
do not study in depth. These methods are either an implementation of an

Table I. Comparison of Language-Based and Operating-System-Based Mechanisms

278 • Jun Lang and David B. Stewart

ACM Transactions on Programming Languages and Systems, Vol. 20, No. 2, March 1998.

equivalent mechanism in a different programming language or operating
system, or each aspect of the mechanism is already covered by one of the
other methods. For example, Portable C11 and Better C are implementa-
tions of C11’s exception handling as language extensions to C. Java’s
mechanism is almost the same as C11’s except that it adds the finally
construct which is used in Modula-3 and Windows NT. Therefore, the
error-handling techniques used in Java, Better C, and Portable C11 are
covered by our study of C11, Modula-3, and Windows NT.

In the remainder of this section, we provide an overview of the basic
elements of the selected mechanisms. More detailed descriptions of each
mechanism can be found in the corresponding references, listed at the end
of each paragraph. The approaches are compared and contrasted in Section
5, using the evaluation criteria that we first outline in Section 4. Sample
code for some of these mechanisms is given in the appendix. Our conclu-
sions are summarized in Section 6.

3.1 Programming-Language-Based Mechanisms

Goodenough’s notation is the first structured exception-handling mecha-
nism proposed. It either terminates or resumes the program’s execution

Table II. Selected Exception-Handling Mechanisms

Real-Time Software Technology • 279

ACM Transactions on Programming Languages and Systems, Vol. 20, No. 2, March 1998.

after an exception is handled. As a result, Goodenough’s notation declares
three kinds of exceptions: Escape, which can only terminate; Notify,
which can only resume; and Signal, which can either terminate or resume.
It also uses the same three keywords to raise the corresponding exceptions.
If an exception is raised from an operation, the mechanism first tries to
find a local handler, which is at the same context as the operation. If it
cannot find a local handler, the system searches the handlers provided by
its direct caller. A handler must exist for the raised exception; otherwise
the program aborts. In this notation, handlers are associated with state-
ments. Also, users can define their own default handler for each exception
and can free resources using cleanup handlers. Exceptions must be
specified in the procedure header [Goodenough 1975a; 1975b].

CLU is based on a simple model of exception handling and can support
only termination. It uses the same algorithm as Goodenough’s notation to
search for an exception handler. Since the mechanism searches only one
level up besides the local context, it is called a single-level termination
model. If a user wants to raise an exception several levels up, he must raise
the same exception explicitly in the handler of each level. This exception
propagation method is thus called explicit propagation. A construct except
. . . end is used to attach handlers to a program statement. Exceptions are
raised by using the statements signal or exit. An exception can carry
parameters with it and must be declared in the heading of the procedure
which might raise it [Liskov and Snyder 1979].

Ada declares exceptions by the statement exception. An exception is
raised by using a raise statement. A begin . . . exception . . . end
construct is used to bind handlers to a code block. An exception not handled
is automatically raised into the upper levels along the calling chain until a
handler is found or until the program boundary is reached. Therefore, this
propagation method is called automatic propagation. Ada also supports
only termination. This exception-handling mechanism can be disabled by
users [Barnes 1995; Department of Defense 1983; Gauthier 1995; Tang
1992].

AML/X is a dynamically scoped programming language which allows
run-time determination of an identifier’s binding. By exploiting this feature
it uses assignment statements, initialization, or declarations instead of
specific primitives to bind a handler to an exception. Meanwhile, it can also
bind another exception identifier to the exception. By doing so recursively,
it can achieve hierarchical exception handling. The handler can be a
procedure, an expression, a boolean, or a label. Exceptions are raised by the
procedure raise_exception(). These exceptions propagate along the iden-
tifier chain instead of the calling chain. AML/X supports termination and
resumption, but the handler is executed only when the operation will
resume [Nackman and Taylor 1984].

The Replacement Model associates handlers with expressions. The han-
dler’s result replaces the expression’s result when an exception is invoked.
Its semantics of signaling an exception are very similar to that of calling a
procedure. The Replacement Model has single-level exception determina-

280 • Jun Lang and David B. Stewart

ACM Transactions on Programming Languages and Systems, Vol. 20, No. 2, March 1998.

tion and explicit propagation, but supports both termination and resump-
tion. It depends on the compiler to check for the exceptions that are not
handled; hence the exceptions must be declared in the procedure interfaces
[Yemini and Berry 1985].

Real-Time Euclid is a real-time programming language that can detect
timing errors. It uses kill and deactivate statements to terminate a
process or to deactivate a process in the cycle when an exception is
detected. It also uses an except statement to raise an exception that must
resume. A handler can be bound to the process or procedure to catch this
exception. Each handler shows its intent to catch certain exceptions by
specifying them in its header [Kligerman and Stoyenko 1986].

Knudsen’s mechanism uses the sequel concept, which is semantically
similar to the procedure concept to declare the exception and bind the
handler. A sequel is declared as Sequel S(. . .) Begin . . . End, where
S(. . .) is the name of an exception combined with its arguments; the code
within Begin . . . End is the handler associated with it. Knudsen’s mecha-
nism supports only termination; the termination level is the block in which
the sequel is declared. A prefixed sequel is used to achieve hierarchical
exception handling. Exception propagation is realized by passing sequels as
procedure parameters [Knudsen 1987].

Dony’s object-oriented exception handling defines exceptions as sub-
classes of the special class ExceptionClass. In this mechanism, handlers
can be attached to exceptions, classes, or expressions. Raising exceptions is
done by sending exception messages to an exception object with the
statement signal. This mechanism supports automatic propagation and
provides a primitive when-exit to cleanup resources when the signaler
terminates (its stack is unwound). Dony’s mechanism supports termina-
tion, resumption, and retry [Dony 1988; 1990].

In C11, there is no specific declaration for an exception. Users can raise
an ordinary object as an exception by using the statement throw. A
try{. . .} catch{. . .} structure attaches handlers led by catch to a guarded
block of code led by try. If the handler for a raised exception cannot be
found locally, C11 unwinds the stack of the try block and propagates the
exception to its caller. This procedure continues until a handler is found or
until the default handler is called, which then aborts the program. After a
handler is found and executed the try block is terminated. Execution
continues at the first statement after the try block to which the executed
handler is attached. Exceptions can be specified in the function header
[Ellis and Carroll 1995; Koenig and Stroustrup 1990; Stroustrup 1991].

Modula-3 uses the statement exception to declare an exception and the
statement raise to raise an exception in conjunction with an argument.
The constructs try . . . except . . . end and try . . . finally . . . end are
used to bind handlers to a code block and to clean up resources. The code
led by finally is executed whether or not exceptions are raised. If the code
is for resource cleanup, then it is guaranteed to be executed no matter what
happens. Only termination is supported in Modula-3 [Cardelli et al. 1988].

Real-Time Software Technology • 281

ACM Transactions on Programming Languages and Systems, Vol. 20, No. 2, March 1998.

Cui’s data-oriented exception handling uses Ada’s exception handling to
declare and raise exceptions. However, it restricts exception handlers to
attach themselves to only packages (objects). Users can overload the
generic exception handler declared in the object definition with their own
handlers when the object is instantiated. As a result, exception propagation
is not needed. Termination is the only supported handling action in this
mechanism, but parameters can be passed with exceptions [Cui 1989].

In declaring and raising exceptions, Exceptional C is the same as
Modula-3, but the number of arguments of an exception has no limit.
Handlers are provided in the except{. . .} block attached to a code block.
Automatic propagation is used in Exceptional C, but the exceptions across
function boundaries must be specified in the function header. Otherwise,
the default exception ERROR is propagated. Exceptional C supports
termination, resumption, and retry [Gehani 1992].

3.2 Operating-System-Based Mechanisms

In Mach, exceptions are messages, and exception handlers are independent
tasks which receive these messages as their input. An exception handler is
bound to a task by registering an exception port to the task. This is
completed by kernel routines such as task_set_exception_port(). Excep-
tions are raised by sending messages to this port. Exception RPCs raise,
wait, catch, and clear are used to raise exceptions, to suspend execution,
to receive raised exceptions, and to send handling results respectively. The
registered ports are scanned to determine exception handlers, and the
exception can be propagated from the thread level to the process level.
Failing tasks terminate or resume after exception handling [Black et al.
1988].

Chimera is an RTOS with two separate mechanisms for handling general
errors [Stewart et al. 1992a] and timing errors [Stewart and Khosla 1997].
In the mechanism for general errors, exceptions are defined and raised by
the function errInvoke(). Handlers are ordinary functions and are bound
to exceptions by calling errHandler(). The exception handler is deter-
mined by checking the handler chain. The default handler is supplied for
exceptions with no specific handler defined. In the mechanism for timing
errors, exceptions are detected by the RTOS. Users bind handlers to the
exceptions by using tfhInstall(). The priority of the handlers can be
different from that of the failing task. Termination, resumption, and retry
are supported in Chimera.

Windows NT’s Win32 API provides programmers with compiler-indepen-
dent exception-handling system calls. Consequently, Windows NT’s mecha-
nism is not language specific, and each language defines how the underly-
ing exception-handling mechanism is exposed. Microsoft C is the first
programming language to use the Windows NT mechanism. In Microsoft C,
programmers use the Win32 routine RaiseException() to raise excep-
tions with its parameters. The construct try{. . .} except{. . .} finally{. . .},
which is similar to that of Modula-3, is used to bind handlers and cleanup

282 • Jun Lang and David B. Stewart

ACM Transactions on Programming Languages and Systems, Vol. 20, No. 2, March 1998.

resources. The handler determination and propagation methods are the
same as C11’s. A filter routine GetExceptCode() is used to discover
which exception is raised. Windows NT supports termination and resump-
tion and provides programmers with systemwide default handlers. An
important feature of Windows NT is that its exception handler can be
another thread or process. This feature, however, is not supported in
Microsoft C [Custer 1993; Niezgoda et al. 1993].

4. EVALUATION CRITERIA

We have established the criteria that we will use to evaluate whether or
not a particular exception-handling method can be used for CB-RTS. The
criteria have been developed based on our extensive work in developing the
Chimera Methodology, a component-based software engineering paradigm
for creating reusable real-time software [Stewart 1994; Stewart et al.
1997]. Although there exist other CB-RTS approaches, most have the same
exception-handling needs.

The evaluation criteria are classified into three categories: essential
requirements, desirable requirements, and performance goals. The require-
ments and goals are often directly or subtly interrelated, and are some-
times contradictory. Thus any solution is likely to be a compromise between
functionality and performance.

4.1 Essential Functional Requirements

An essential functional requirement must be satisfied in order to provide a
mechanism that is suitable for CB-RTS. If the requirement is not satisfied,
then some aspect of component-based design or real-time system design is
compromised. Following are the essential requirements and the effect of
not satisfying each one.

Reusability. Software components are reusable. An exception handler
that is bound to a software component must also be reusable. Alternately,
exceptions and exception handlers are defined independent of the compo-
nent, thus reused independently.

If reusability is not satisfied, it compromises the ability to incorporate
exception handling into software components. It forces programmers to
write exception-handling code even if the main body of code is already
available.

Encapsulation. Software components have strict encapsulation require-
ments. All data and functions are local, unless explicitly exported. An
exception-handling mechanism must also differentiate between exceptions
that are detected and handled locally and those exceptions that are
detected internally but exported for other components to handle. Results of
exported exception handling must be importable [Dony 1988].

Encapsulation is an essential ingredient to any component-based soft-
ware paradigm. If this requirement is not supported, component-based
software development is compromised.

Real-Time Software Technology • 283

ACM Transactions on Programming Languages and Systems, Vol. 20, No. 2, March 1998.

Predictability. A real-time system is still predictable even after an
exception occurs. The overhead of raising an exception and determining the
handler must be time-bounded and preferably O(1). The exception han-
dling of a failing task should not cause higher-priority critical tasks to miss
their deadlines unless the higher-priority tasks are directly affected by the
failing task.

Although just ensuring the mechanism is time bounded does not make
the application predictable, not meeting this requirement makes it impos-
sible for the application-level software to be predictable. To ensure time-
bounded exception handling, user-defined exception handlers must also be
time bounded. In this study, however, we only focus on the mechanisms
and not the user-defined policies.

Exception Handler Binding. It must be possible to add a new exception
handler or change the currently installed exception handler as the system
is running, without shutting down or rebooting the system.

Many critical real-time systems cannot be shut down and rebooted. The
exception handling, however, may be a function of the environment or the
current needs of an application. If this requirement is not satisfied, a
CB-RTS component might need to be rewritten for every application or
environmental circumstance, just because the exception-handling require-
ments differ. This violates the fundamental definition of component-based
software design.

Distributed Processing. An exception handler component can be another
thread or process. It can run on another processor if it is in a distributed
shared-memory or network environment. The software component raising
an exception is completely independent from the component that deals with
the exception.

Because each CB-RTS component runs as a separate process or thread
and is transparent to the processor on which it is running, a mechanism
that does not support distributed processing forces the programmer to
transfer exceptions to other processes manually. Consequently there is no
consistent structure for exception propagation, which affects the ability to
assemble a new application from existing software components.

Totality. A mechanism can detect all types of errors and raise their
corresponding exceptions [Lindsay 1977]. In addition to the conventional
hardware errors and software errors, the mechanism must be able to detect
state and timing errors and provide methods to handle them.

It is important to detect and handle state errors and timing errors in
real-time systems, in such a manner that the system does not fully fail. If a
mechanism does not support detection and handling of all types of errors,
there is the potential for critical failure should those errors occur.

Criticality Management. Priority or criticality of an exception handler
should be flexible and in general under control of the software. In most
real-time systems, processes are priority driven, using either static or

284 • Jun Lang and David B. Stewart

ACM Transactions on Programming Languages and Systems, Vol. 20, No. 2, March 1998.

dynamic priorities. Such priorities must be maintained, even by exception
handling, in order to prevent priority inversion or error explosion.

In many real-time systems, the handling of an error is not necessarily the
highest-priority event. For example, in a flight control system, it is more
important to execute the control algorithms that ensures continued flight of
the airplane, rather than handle an exception that is indicating that a
temperature sensor is providing faulty data. An exception-handling mech-
anism without some form of criticality management is likely to always
execute an exception handler at highest priority; such practice could prove
damaging or fatal in a real-time system.

Determining the priority of an exception is a subtle design decision to
avoid unnecessary priority inversion leading to timing errors. However,
this is a policy decision, not a mechanism decision. As a result, the
exception-handling mechanism should provide a method to control the
priority of an exception, but need not to determine the priority.

Consistency. A task can keep its state consistent when an exception
occurs. Allocated resources should be cleaned up when a task is terminated
because of an exception. Because real-time systems usually continue to
execute even in the presence of errors to prevent catastrophic failures, the
integrity of shared data and resources must always be maintained.

A mechanism that is not compatible with the synchronization methods
used to guard access to critical sections can lead to additional errors. Since
the system must do its best to recover from the original errors, it is not
acceptable for the exception-handling mechanism to ignore the integrity
issues of the shared resources.

4.2 Desirable Requirements

Desirable requirements include readability, ease of use, and compatibility.
They are helpful, but are not crucial to the correct operation of a mecha-
nism. Although these requirements are subjective, there are still some
basic principles that should be observed by all mechanisms.

Readability. Some mechanisms have a higher capacity to improve a
program’s readability than others. Good readability reduces errors and the
cost of maintenance. However, determining readability is subjective. Often,
if a mechanism can provide the same functionality as another mechanism
with fewer lines of code, fewer nested operations, or can separate the
exception-handling code from the main execution code, it is considered to
have better readability.

Good readability is important to an exception-handling mechanism be-
cause it is one of the founding principles for structured exception handling.
If a mechanism does not improve the readability, people are reluctant to
use it.

Ease of Use. There must be as little extra work as possible for program-
mers using a mechanism. A mechanism that provides a set of standard

Real-Time Software Technology • 285

ACM Transactions on Programming Languages and Systems, Vol. 20, No. 2, March 1998.

templates or a CASE tool to speed the development is often considered
easier to use.

Ease of use is significant for the success of a mechanism. If a mechanism
is difficult to use, no one will use it even if it provides very good function-
ality.

Compatibility. A mechanism can catch and handle the exceptions raised
by external modules. It is desirable for operating-system-based mecha-
nisms to coexist with mechanisms that are part of programming languages,
and vice versa, and for mechanisms to be compatible across the different
programming languages which may be used in a large application.

Mechanisms that are not compatible increase development and mainte-
nance cost and reduce the reliability of exception handling.

4.3 Performance Goals

Performance goals include reliability, efficiency, development cost, and
response time. If two methods provide the same functionality, the one with
better performance is desired. There is always a trade-off between function-
ality and performance. If a design cannot meet its performance specifica-
tions while keeping all the required functionality, a designer may choose to
sacrifice the functional requirements to get better performance. From our
previous description of requirements in Section 4.1, the designer knows
what is going to be lost if an essential requirement is not met.

Reliability reflects the quality and robustness of a mechanism and the
program using the mechanism. It should be maximized. A mechanism itself
should not introduce new errors into programs. It should have some
facilities to help the programmer prevent or detect additional errors. It
should also encourage programmers to think more thoroughly about excep-
tion-handling strategies, or help them write good exception handlers. This
in turn increases the reliability of the program.

Efficiency, also known as overhead, reflects the resources needed to
execute the mechanism, such as CPU time, memory, disk space, and
communication channels. Overhead should be minimized.

Response time is the time that a mechanism needs from raising an
exception to invoking an associated handler, and it must be optimized.
Response of an exception-handling mechanism is important to real-time
systems, since exceptional situations usually require quick handling; other-
wise the result may be dangerous or catastrophic. Mechanisms with quick
responses are desirable.

Development cost refers to the time and effort of the application program-
mer (hence labor costs) invested in designing and implementing a desired
policy given an exception handler mechanism. The mechanism requiring
lowest development cost while meeting the other requirements is desired.

Note that in real-time systems, performance goals are not necessarily the
same as in non-real-time systems. For example, the overhead during
initialization is not crucial. In most non-real-time environments, one of the
main goals of an exception-handling mechanism is to minimize the perfor-

286 • Jun Lang and David B. Stewart

ACM Transactions on Programming Languages and Systems, Vol. 20, No. 2, March 1998.

mance overhead of defining exceptions and binding handlers under normal
system operation. The penalties of exception handling only occur when an
exception is in fact detected. The design goal is achieved at the cost of large
overhead in raising exceptions and selecting the appropriate handler for a
specific exception [Koenig and Stroustrup 1990; Liskov and Snyder 1979].

Real-time systems, in contrast, have many timing constraints, and the
amount of time to detect and handle an exception must be bounded. For
example, if brakes need to be applied to a moving locomotive to prevent an
accident, any delay in applying those brakes may result in the train not
stopping in time. In most real-time systems, it is acceptable to increase the
overhead of initializing a mechanism, in favor of reducing the overhead and
bounding the time to detect and handle an exception when it occurs
[Stankovic 1988].

5. APPROACH COMPARISON

Different implementation approaches of major components of the current
exception-handling mechanisms are compared in this section. Following are
the major components of an exception-handling mechanism that we study,
which are derived from basic requirements of applications that use excep-
tions:

(1) Exception representation
(2) Handler binding
(3) Exception raising
(4) Handler determination
(5) Information passing
(6) Handler scope
(7) Resource cleanup
(8) Exception interface
(9) Criticality management

(10) Reliability checks

We now compare the approaches to realize these elements one by one. A
summary of the comparison is listed in Table III.

5.1 Exception Representation

Exception representation defines what an exception is and how it is repre-
sented in an exception-handling mechanism. An exception can be defined
as either a special or an ordinary data type, a data structure, a procedure,
a message, or a primitive similar to a procedure. Current exception
representations organize exceptions into one of the three structures: singu-
lar, hierarchical, or object structure.

Many of the mechanisms shown in Table III use the singular structure.
The singular structure is shown in Figure 1(a). Each exception is unrelated
to the others, as there is no way to group exceptions together. In the
hierarchical structure, as shown in Figure 1(b), an exception can have
several subexceptions, but any exception can have at most one parent.

Real-Time Software Technology • 287

ACM Transactions on Programming Languages and Systems, Vol. 20, No. 2, March 1998.

AML/X, Knudsen’s mechanism, and Chimera have this exception structure.
Chimera’s mechanism, however, is limited to only two levels. As shown in
Figure 1(c), object structure relaxes the restriction on the number of
parents, as compared to the hierarchical structure. Therefore, an exception
can have both several children and several parents. C11 and Lore support
this exception organization.

Advantages of the object exception structure are that it directly maps the
native relation of exceptions so the handler for a parent exception can

Table III. Summary of Exception-Handling Mechanisms (see Table II for references)

288 • Jun Lang and David B. Stewart

ACM Transactions on Programming Languages and Systems, Vol. 20, No. 2, March 1998.

naturally handle all its child exceptions. Consequently, less handler bind-
ings are needed, and the program is shorter. This improves readability and
makes the mechanism easier to use. For instance, if a handler wants to
handle all the exceptions Exc, Exc1, . . . , Exc5, binding the handler to Exc
achieves this aim in the object structure. In the singular structure, the
handler must be attached to each exception.

Because hierarchical exception organization still has restrictions com-
pared to object structure, the natural relationship between exceptions
cannot be completely realized, and the advantages mentioned above cannot
be fully exploited. Consider the following scenario: When Exc4 occurs, there
are no handlers attached to either Exc4 or Exc2, but there is a handler for
Exc1. We want this handler to deal with Exc4. In the hierarchical struc-
ture, we need to attach the handler to Exc4, but in the object structure, this
operation is unnecessary. Therefore, the readability and ease of use of the
hierarchical structure are not as good as those of the object structure.

Any exception organization is applicable to CB-RTS. A mechanism can
choose to use one of them based on the consideration of other desirable
requirements such as performance overhead and implementation cost. If
these desirable requirements can be satisfied, the object or hierarchical
structure is preferred because of its readability and ease-of-use advantages.

5.2 Handler Binding

Handler binding attaches handlers to certain exceptions to catch their
occurrences in the whole program or part of the program. It is also called
handler association. There are three ways to bind handlers with exceptions:
static, semi-dynamic, and dynamic binding.

In static binding, once a handler is attached to an exception, the same
handler is used for every occurrence of that exception in the whole program
or process. The handler is associated with the exception in different
contexts of the program. Knudsen’s mechanism uses this method. The
exception and its handler are defined together and associated statically.
Cui’s data-oriented exception handling is another example of static binding.
Although different instances of the same object can have different handlers,
the handler binding is permanent.

Semidynamic binding associates different handlers with the exception in
different contexts during a program’s execution. It uses binding constructs
such as try{. . .} catch{. . .} to attach handlers. In the context of the try

Fig. 1. Diagrammatic view of exception representations.

Real-Time Software Technology • 289

ACM Transactions on Programming Languages and Systems, Vol. 20, No. 2, March 1998.

block, this association is still static. Most programming-language-based
mechanisms support this kind of handler binding.

The dynamic binding method can attach different handlers to the excep-
tion in the same context. Which handler should be used cannot be deter-
mined at compile-time and must be checked during run-time. Dynamic
binding usually uses system calls or imperatives. The setup calls for
dynamic binding, however, introduce overhead to the main line execution of
a program [Lindsay 1977]. This overhead should be minimized or con-
trolled, e.g., the overhead occurs in initialization instead of run-time.
Chimera, Mach, and AML/X are examples of the dynamic handler binding
method.

The semidynamic binding method can be used to achieve the functional-
ity similar to that of the dynamic method. A semidynamically bound
handler can call different handler routines based on run-time conditions,
except that once a handler needs to be changed the program needs to be
recompiled. However, static binding cannot achieve this because the run-
time condition may not be valid in some contexts.

Static binding does not satisfy the essential requirements of reusability
and exception handler binding because the handler code must be rewritten
in order to change a handler. Dynamic binding or semidynamic binding,
however, does satisfy these requirements because it naturally allows differ-
ent handlers to be used based on run-time conditions.

5.3 Exception Raising

Exception raising is the notification of an exception’s occurrence. Exception
detection and raising for predefined exceptions and user-defined exceptions
are different. For predefined exceptions, detection and notification are
usually performed implicitly by the run-time system, by either hardware or
software. For user-defined exceptions, the user must explicitly test the
exception conditions and raise the exceptions.

For the implementation of exception raising, current mechanisms use
control flow transfer, message passing, or trap, which is a software inter-
rupt, to raise an exception.

Most mechanisms notify the occurrence of exceptions by transferring the
control flow. For instance, Exceptional C uses setjmp/longjmp routines;
Chimera uses a function call errInvoke(); and C11 uses the throw
statement.

Message passing is another way to raise exceptions. In Lore, raising an
exception is accomplished by first creating an instance of the exception
class and then sending a message to one of its methods (e.g., look_for_han-
dlers). Mach realizes this by sending messages to exception ports registered
for the task.

Windows NT uses the trap method. When an exception turns up, a trap
occurs which captures an executing thread, switches it from the user mode
into the kernel mode, and transfers the control to a fixed location in the
operating system, which is called a trap handler. The trap handler notifies

290 • Jun Lang and David B. Stewart

ACM Transactions on Programming Languages and Systems, Vol. 20, No. 2, March 1998.

a kernel module, called the exception dispatcher, that an exception has
occurred.

While control flow transfer has the advantages of quick response and
high efficiency, message passing and the trap method enable distributed
processing, by allowing an exception to propagate beyond the boundaries of
the process. The advantage of the trap method is that it immediately
invokes the operating system’s process management code. Its disadvantage
is the performance penalty because the kernel must be called every time an
error occurs [Niezgoda et al. 1993]. Message passing is also suitable for
distributed processing. Its advantage is explicit operating-system-indepen-
dent transfer of an exception. Its disadvantage is large communication
overhead, with possible unbounded time delay.

Based on our comparison, message passing or the trap method can be
applied to CB-RTS because they are essential to distributed processing. A
method which combines control flow transfer with message passing or trap
may also be applicable. The best design for exception raising is likely to be
a compromise between these methods.

5.4 Handler Determination

Handler determination is the process of receiving the notification, identify-
ing the exception, and determining the associated handler. Methods used to
determine handlers and to propagate exceptions vary greatly. They can be
divided into the following categories:

—Stack unwinding
—Handler pool
—Combination of stack unwinding and handler pool
—Backtracking exception identifier bindings
—Scanning instances of objects

One of the main issues with handler determination is the time it takes to
find the proper handler once an exception is raised, which we call the
worst-case search time (WCST).

C11, Ada, RT Euclid, and Modula-3 use stack unwinding to search for
an associated handler. This technique linearly checks exception handlers
statically defined on the current program block (context). The handler
defined first is checked first. If none can be found to handle the raised
exception, the context stack is unwound, and the search begins within the
new context. The order of stack unwinding is in reverse order of the actual
calling chain, which is the sequence of nested operation calls.

Handler stack unwinding is a variant of the stack-unwinding technique.
This technique maintains another stack consisting of only the stack frames
guarded by the handlers. This stack is searched and unwound to find the
handler. Once the handler is found and the stack frame is determined, the
main stack is unwound directly to this frame, and the handler is executed.
Exceptional C uses this technique.

Real-Time Software Technology • 291

ACM Transactions on Programming Languages and Systems, Vol. 20, No. 2, March 1998.

Another variant is single-level stack unwinding. The stack unwinds only
once. If a handler is still not found in the new context a fatal error occurs,
and the program aborts. Compiler checking is used to assure that a handler
is supplied, either locally or in the caller. Goodenough’s notation and the
Replacement Model use this method.

The WCST of stack unwinding is proportional to the length of the calling
chain and the total number of handlers defined. Because the execution path
of a program cannot be predicted before running, the length of the calling
chain or the number of defined handlers are also unpredictable. As a result,
the WCST is unbounded. Conversely, the WCST of its variants are propor-
tional only to the number of all handlers or local handlers defined and are
time unbounded.

A handler pool is a handler chain (i.e., a linked list) or a table of
handlers, each of which has been bound to a specific exception or group of
exceptions. Chimera uses a handler chain; Mach uses a port table. To find
an associated handler, the pool is searched linearly. WCST is proportional
to the total number of handlers defined. CLU, Lore, and Windows NT
combine stack unwinding with the handler pool technique: a separate
handler chain or table is stored within the stack frame. As with both stack
unwinding and pure handler pool methods, the WCST of this technique is
not time bounded.

AML/X backtracks exception identifier bindings to determine a matching
handler. Similar techniques are used in Knudsen’s mechanism. A sequel
can prefix another one to achieve hierarchical handling. The sequence of
the prefixed sequel should be backtracked to find the first handler to be
executed. The WCST of this method is proportional to the number of the
bindings. This number however is not bounded.

Cui’s mechanism scans all the instances of an object for handler determi-
nation, since users can supply different handlers for the same exception
raised in different instances. As a result, the WCST is proportional to the
number of instances. Consequently it is unbounded.

Although handler determination methods adopted by different exception-
handling mechanisms look very different, none of them are sufficiently
predictable for a real-time system, since the amount of time to determine
the proper exception handler is not time bounded. In theory, if a mecha-
nism uses the singular structure, static binding, and treats the exception
raised from different instances of a guarded object as the same, then its
handler determination time should be time bounded. However, no current
mechanisms use this design, and the design would not satisfy the essential
requirements, since static binding and singular structure are not suitable
for CB-RTS, as described in prior sections. Thus, no current approach
satisfies the essential requirements for CB-RTS, so further research into
handler determination is needed.

5.5 Information Passing

Information passing transfers information useful to the treatment of an
exception from its raising context to its handlers. The information should

292 • Jun Lang and David B. Stewart

ACM Transactions on Programming Languages and Systems, Vol. 20, No. 2, March 1998.

be passed together with the notification of the exception, and it may
include the name, description, location, severity of the exception, and other
useful data. Since the exception might be raised outside the current
environment, the saved information should be independent from the rais-
ing environment. Current exception-handling mechanisms either support
no information passing, limited information passing, or complete informa-
tion passing. No user-defined information can be passed to the exception
handler using Real-Time Euclid or Goodenough’s notation.

Limited information passing only allows users to pass the predefined
information or a limited amount of information. Ada, Windows NT, AML/X,
Modula-3, Mach, and Chimera support this method. Ada provides the
package Ada.Exceptions to save the exception name and message and to
retrieve them for later analysis. Mach can only pass two fields in the
exception messages. Chimera, Windows NT, Modula-3, and AML/X can only
pass one argument. This argument cannot be a complex data type such as
data structure. However, it can be a pointer as the case in Chimera and
Windows NT. As a result, Chimera and Windows NT can still achieve
unrestricted information passing except for expressive power and ease of
use.

Other mechanisms have no restriction on the amount of information that
can be passed. C11 and Lore define exceptions as classes. A raised
exception is an instance of a class and can carry as much information as
needed. Information can also be passed as parameters to an exception in
the same way as passing function parameters. The cost of this method is
that more memory is needed to save the information.

Information passing is a necessity for distributed exception processing,
since the handler is not in the same context as the failing task and
therefore cannot access the data directly. Information passing can increase
the reliability of the program even in the case of nondistributed processing.
Without an information-passing scheme, global variables such as errno in
UNIX/C must be used to transmit the information. Using global variables
increases module coupling and prevents the creation of reusable software
components.

Methods that allow users to pass complete information without any
restrictions are ideal for CB-RTS, although limited information passing is
often sufficient and can better meet the performance goals. A mechanism
with no information passing is not suitable for CB-RTS, since many
components may be replicated, and at the very least some component-
specific state must be passed to the exception handler.

5.6 Handler Scope

Handler scope is the entity to which an exception handler is attached.
Depending on the exception-handling mechanisms, an entity can be a
program, a procedure, a block, a statement, an expression, an object, or
data. The handler scope can be divided into three categories: local, global,
and hybrid.

Real-Time Software Technology • 293

ACM Transactions on Programming Languages and Systems, Vol. 20, No. 2, March 1998.

The local handler scope has explicit evidence of handler affiliation with
an exception activation point. For example, C11 uses the catch block to
attach exception handlers to the try block. The handlers associated with the
try block can only handle exceptions raised within the block. The try block
is the scope of the handlers. Other examples of local scope include handlers
attached to expressions, statements, and procedures. Ada, CLU, Excep-
tional C, Goodenough, Modula-3, and the Replacement Model all use this
method.

The global handler scope does not have explicit evidence of handler
association. The handler scope is a program or a process. Examples are
handler association with an object, data, a process, or a program. If the
handler is associated with a program, we usually consider it associated
with the exception itself. Mach, AML/X, RT Euclid, Cui’s mechanism, and
Knudsen’s mechanism use the global handler scope.

The hybrid handler scope is the combination of local and global handler
scopes. In Lore, handlers can be attached to objects, the exception itself,
and expressions. Chimera’s mechanism can be used to achieve both local
and global scopes; thus it is considered hybrid.

The disadvantage of local handler scope is that the exception-handling
code is still cluttered within the main operation code, although they are
separate to some degree. Another drawback is that nested blocks are
usually added for the sole purpose of attaching an exception handler. As a
result, it reduces the readability.

The global handler scope thoroughly solves the problem of separating
exception-handling code from the main text; however, contrary to the local
handler scope, it is awkward to handle the situation where different
handlers are needed for the same exception at different activation points
within a local scope. To deal with this, the different handlers for the same
exception must have preferences or priorities in order to resolve the
association in a deterministic manner.

The global handler scope also prohibits hierarchical exception handling.
Hierarchical exception handling is desirable because it can achieve infor-
mation hiding and encapsulation. In C11, an exception can first be
handled by a low-level handler. If it cannot resolve the exception, it can
rethrow the same exception, and a higher level handler can catch it. In
Mach, an invoked exception reveals low-level implementation detail to the
high-level handler.

Hybrid handler scope gives the user the most flexibility and combines the
advantages of both global and local handler scopes. CB-RTS needs to have
at least global scope to satisfy the distribution requirement, although a
hybrid method is preferred; it may also provide better modular decomposi-
tion and performance by separating local and global exceptions.

5.7 Resource Cleanup

Programs must clean up allocated resources when they terminate, to keep
the integrity, correctness, and consistency of the program. Meanwhile,

294 • Jun Lang and David B. Stewart

ACM Transactions on Programming Languages and Systems, Vol. 20, No. 2, March 1998.

resource cleanup is also required by atomic transactions, which are impor-
tant in many real-time systems. For instance, if an exception happens after
one process enters a critical section, the process must leave the critical
section if the failed process is going to terminate. Otherwise all processes
that want to use the critical section will be blocked.

None of the existing exception-handling mechanisms have automatic
resource cleanup facilities. Instead, they provide a construct which is
executed whenever the guarded program unit exits, or they disable raising
exceptions temporarily before releasing resources.

Windows NT, Modula-3, Lore, and Goodenough’s notation use the con-
struct method. Windows NT calls it termination handler. Lore implements
it by using a primitive when-exit, and Goodenough’s notation refers to it as
cleanup handler. Programmers can release resources in this construct, and
the system will execute it no matter why the unit exits, normally or
exceptionally.

C11’s solution, the “resource acquisition is initialization” technique
[Stroustrup 1991], is a variant of the construct method. The request of
resource allocation is made only in the constructor of an object, and the
allocated resources are released in the destructor. Since the destructor is
called independently of whether the function exits normally or exception-
ally, the resources are freed at the end of the scope of the object.

Real-Time Euclid provides the construct initially to prohibit exception
raising from it. Although it is useful when a process is in a critical section
or an initial section, this method cannot be used extensively, since it
contradicts the original purpose of introducing exception handling.

Other mechanisms do not have resource cleanup support. The construct
method is difficult to apply to CB-RTS without the support of the compiler.
The disable method is applicable to CB-RTS, but it can result in priority
inversion, as further discussed in Section 5.9. Thus it should only be used
as a complementary way to preserve the consistency of the system. Inves-
tigation of alternate methods that can be incorporated into a RTOS and
suitable for CB-RTS is required.

5.8 Exception Interface

The exception interface is the part in a module interface that explicitly
specifies the exceptions that might be raised by the module. Exceptions
undeclared in the exception interface are prohibited from propagating
outside of the current module. Since exceptions introduce the possibility of
nonlocal flow of control, problems such as intermodule coupling [Cui 1989]
and exception safety [Custer 1993] arise. If exceptions are not listed in the
headings or specifications of the module from which they are raised, their
callers might not prepare for these exceptions and will create problems. An
explicit exception specification solves these above problems and increases
the reliability of creating an application from software components.

Another advantage of an explicit specification is that it enables static
reliability checks. An explicit exception specification reduces flexibility in

Real-Time Software Technology • 295

ACM Transactions on Programming Languages and Systems, Vol. 20, No. 2, March 1998.

favor of allowing more static checks, although a long list of potentially
raised exceptions may make the whole interface of a function difficult to
use. Note that reducing flexibility does not mean reducing functionality. It
often means only providing one way to achieve a certain functionality,
rather than 10 ways, or preventing a programmer from generating excep-
tions unless they are predefined, just as variables are predefined.

C11, CLU, Cui’s mechanism, Goodenough’s mechanism, the Replace-
ment Model, Knudsen’s mechanism, and Exceptional C specify exception
interfaces in their function headings. An example of Exceptional C’s
function prototype is the following (see Listing 5 in the appendix for
details):

void move (float x, float y, float orient) raises (exception err_move)

The part led by the key word raises is the exception interface of the
function move(). However, some mechanisms compromise the explicit
specification for the sake of flexibility, especially that of the predefined
exceptions that could arise anywhere. For example, in Goodenough’s mech-
anism, a predefined exception ENDED, which stands for normal termina-
tion, is implicitly included in the exception interface [Goodenough 1975a].

Other mechanisms do not have any form of exception interface. CB-RTS
requires the strict nature of an explicit exception interface, in order to
allow for software assembly of the components [Gertz et al. 1995]. Thus the
function header method may be applicable. Since a function header method
requires language support, this method is not suitable for operating sys-
tems. Further research is required if an operating-system-based exception-
handling mechanism is used for CB-RTS.

5.9 Criticality Management

Criticality management is the ability to dynamically change the priority or
criticality of an exception handler, so that it can be changed based on the
importance of the raised exception or the importance of the process in
which the error occurred. If the exception is crucial to the system, its
handler may execute at the highest priority, even if it is raised from a low
criticality process. If it is a minor error, exception handling can be deferred.

Only the Chimera RTOS timing error detection and handling mechanism
explicitly has criticality management [Stewart and Khosla 1997]. During
exception handler binding, a priority is attached to the handler. When the
exception handler is invoked, the priority of the process executing can be
raised, lowered, or left the same. This allows critical exception handling to
be executed immediately, while minor errors are handled only when
higher-priority processes have completed their execution. Chimera’s global
error handling for nontiming errors, however, does not support criticality
management.

None of the existing exception-handling mechanisms support criticality
management for all types of errors. Criticality and processes are operating
system concepts. However, even current operating-system-based mecha-

296 • Jun Lang and David B. Stewart

ACM Transactions on Programming Languages and Systems, Vol. 20, No. 2, March 1998.

nisms do not support criticality management. Criticality management is an
important topic for future research.

5.10 Reliability Checks

Reliability checks test for possible errors introduced by an exception-
handling mechanism itself. Static checks are performed by the compiler
while dynamic checks are performed by the run-time system.

Static reliability checks are useful in finding errors due to the misuse of
the mechanism, such as associating more than one handler to an exception
at one time. They also reduce run-time checking overhead so that the
mechanism runs faster. However, if static checks are used to discover the
exceptions with no handlers, they must impose some restrictions on the
mechanism [Goodenough 1975a] and are burdensome to programmers
[Koenig and Stroustrup 1990].

Goodenough’s mechanism and the Replacement Model use static checks
to ensure that no exceptions can be raised without a handler. All the other
mechanisms use dynamic checks to detect the exceptions that are not
handled. The program terminates when such an exception is discovered by
dynamic checks.

Three approaches are used to deal with the unhandled exceptions when
dynamic checks are adopted. C11, Lore, Windows NT, and Chimera use
the global default handler to process any unhandled exceptions. The
default handler prints out error messages and terminates the program.
CLU and Exceptional C change any unhandled exceptions into a predefined
exception such as Error or Failure and provide the default handler to
handle the exception. The other mechanisms that use dynamic checks
terminate the program directly when an unhandled exception occurs.

Both static checks and dynamic checks are desirable to maximize reli-
ability. The use of reliability checks, however, must be balanced with the
additional complexity, and the effect that complexity has on the perfor-
mance goals set out in Section 4.3.

6. CONCLUSION

Most current research into exception-handling technologies targets non-
real-time systems. There are some fundamental differences between the
objectives of real-time and non-real-time systems that make it inappropri-
ate to simply use a mechanism designed for one environment in the other
environment. To summarize our findings, the following issues must be
addressed in order to create an exception-handling mechanism suitable for
CB-RTS.

(1) The differences in requirements of real-time systems and non-real-time
systems require a change in the design of exception handler definition
and binding. Most existing mechanisms are designed such that the bulk
of exception-handling overhead occurs only after an error is detected.
This design is a result of one of the main goals of existing mechanisms
to minimize the performance overhead of defining exceptions and

Real-Time Software Technology • 297

ACM Transactions on Programming Languages and Systems, Vol. 20, No. 2, March 1998.

binding handlers under normal system operation. In real-time systems,
it is acceptable to incur significant overhead during initialization, in
favor of guaranteed time-bounded detection and handling. None of the
mechanisms we studied, including RT Euclid and Chimera’s mecha-
nism that were designed especially for real-time systems, sufficiently
address these real-time system issues.

(2) Propagation of exceptions across process boundaries must be incorpo-
rated into an exception-handling mechanism for CB-RTS and must be
transparent to the application designer. Software components in real-
time systems are usually processes or threads. Interaction between
components must be done through some form of interprocess communi-
cation (IPC). If an error occurs in one component and must be handled
by another, then the error-handling mechanism must also use some
form of IPC. Language-based mechanisms tend to not have any concept
of processes, while operating system mechanisms leave IPC up to the
programmer.

(3) A mechanism that provides criticality management of hardware, soft-
ware, and state errors in CB-RTS systems is needed. CB-RTS processes
are typically scheduled either by a fixed or dynamic priority [Stewart
1994]. High-priority processes can preempt lower-priority processes, in
order to ensure that critical processes meet their timing constraints
and that critical code gets executed all the time, even in the presence of
a transient overload. In the same token, exception handling of lower-
priority processes must not preempt higher-priority processes from
executing their normal operating code. Furthermore, if multiple excep-
tions are active at the same time, the highest-priority exceptions should
be executed first. Only operating-system-based mechanisms had con-
cepts of priorities, and of those, only the Chimera RTOS mechanism
explicitly has criticality management for detecting and handling timing
errors [Stewart and Khosla 1997].

Some requirements of CB-RTS exception handling, such as criticality
management and exception raising to support distributed processing, have
only been provided by operating-system-based mechanisms. On the other
hand, needs such as explicit exception specification and static reliability
checks have only been provided by programming-language-based mecha-
nisms. We feel that the necessary design for an exception handler mecha-
nism suited for CB-RTS will require a cooperative solution between the
programming language and the operating system. Microsoft C plus Win-
dows NT is currently the only such cooperative solution; however, that
specific mechanism does not meet several of the essential requirements for
CB-RTS.

The issues presented in this article differentiate the exception-handling
needs of CB-RTS as compared to other software paradigms and can serve
as a driving force for future research into exception-handling technology.

298 • Jun Lang and David B. Stewart

ACM Transactions on Programming Languages and Systems, Vol. 20, No. 2, March 1998.

ONLINE-ONLY APPENDIX

This appendix is available only online as a g’zipped tar file. You should be
able to get the online-only appendix from the citation page for this article:

http://www.acm.org/pubs/citations/journals/toplas/1998-20-2/p274-lang

Alternative instructions on how to obtain online-only appendices are given on
the back inside cover of current issues of TOPLAS or on the ACM TOPLAS
Web page:

http://www.acm.org/toplas

REFERENCES

BARNES, J. 1995. Programming in Ada 95. Addison-Wesley, Reading, Mass.
BIHARI, T. E. AND GOPINATH, P. 1992. Object-oriented real-time systems: Concepts and

examples. IEEE Comput. 25, 12, 25–32.
BLACK, D. L., GOLUB, D. B., HAUTH, K., TEVANIAN, A., AND SANZI, R. 1988. The Mach

exception handling facility. Tech. Rep. CMU-CS-88-129, School of Computer Science, Car-
negie Mellon Univ. Pittsburgh, Pa.

BORGIDA, A. 1986. Exceptions in object-oriented languages. ACM SIGPLAN Not. 21, 10,
107–119.

CAMERON, D., FAUST, P., LENKOV, D., AND MEHTA, M. 1992. A portable implementation of
C11 exception handling. In Proceedings of the USENIX C11 Technical Conference.
USENIX, Berkeley, Calif., 225–243.

CAMPIONE, M. AND WALRATH, K. 1996. The Java Tutorial: Object-Oriented Programming for
the Internet. The Java Series. Addison-Wesley, Reading, Mass.

CARDELLI, L., DONAHUE, J., GLASSMAN, L., JORDAN, M., KALSOW, B., AND NELSON, G. 1988.
Modula-3 report. Tech. Rep. 31, Systems Research Centre, Digital Equipment Corp.,
Cupertino, Calif.

COCCO, N. AND DULLI, S. 1982. A mechanism for exception handling and its verification
rules. Comput. Lang. 7, 2, 89–102.

COX, I. J. AND GEHANI, N. H. 1989. Exception handling in robotics. IEEE Comput. 22, 3,
43–49.

CRISTIAN, F. 1982. Exception handling and software fault tolerance. IEEE Trans. Comput.
C-31, 6, 531–540.

CUI, Q. 1989. Data-oriented exception handling. Ph.D. thesis, Univ. of Maryland.
CUSTER, H. 1993. Inside Windows NT. Microsoft Press, Bellevue, Wash.
DEPARTMENT OF DEFENSE. 1983. Reference manual for the Ada programming language.

MIL-STD 1815A. United States Dept. of Defense, Washington, D.C.
DONY, C. 1988. An object-oriented exception handling system for an object-oriented lan-

guage. In ECOOP ’88, European Conference on Object-Oriented Programming. Lecture Notes
in Computer Science, vol. 322. Springer-Verlag, New York.

DONY, C. 1990. Exception handling and object-oriented programming: Towards a synthesis.
ACM SIGPLAN Not. 25, 10, 322–330.

ELLIS, M. AND CARROLL, M. 1995. Tradeoffs of exceptions. C11 Rep. 7, 3, 12 and 14, 16.
GAUTHIER, M. 1995. Exception handling in Ada-94: Initial users’ requests and final fea-

tures. ACM SIGADA Ada Lett. 15, 1, 70–82.
GEHANI, N. H. 1992. Exceptional C or C with exceptions. Softw. Pract. Exper. 22, 10,

827–848.
GERTZ, M. W., MAXION, R. A., AND KHOSLA, P. K. 1995. Visual programming and hypermedia

implementation within a distributed laboratory environment. Int. J. Intell. Automat. Soft.
Comput. 1, 1, 43–62.

GOLDBERG, A. AND ROBSON, D. 1983. Smalltalk-80: The Language and Its Implementation.
Addison-Wesley, Reading, Mass.

Real-Time Software Technology • 299

ACM Transactions on Programming Languages and Systems, Vol. 20, No. 2, March 1998.

GOODENOUGH, J. B. 1975a. Exception handling: Issues and a proposed notation. Commun.
ACM 18, 12, 683–696.

GOODENOUGH, J. B. 1975b. Structured exception handling. In Conference Record of the 2nd
Annual ACM Symposium on Principles of Programming Languages 204–224.

ISHIKAWA, Y., TOKUDA, H., AND MERCER, C. W. 1990. Object-oriented real-time language
design: Constructs for timing constraints. In Proceedings of the OOPSLA/ECOOP ’90
Conference on Object-Oriented Programming Systems, Languages and Applications. ACM
SIGPLAN Not. 25, 10, 289–298.

KENNY, K. B. AND LIN, K.-J. 1991. Building flexible real-time systems using the Flex
language. IEEE Comput. 24, 5, 70–78.

KLIGERMAN, E. AND STOYENKO, A. D. 1986. Real-time Euclid: A language for reliable real-
time systems. IEEE Trans. Softw. Eng. 12, 9, 941–949.

KNUDSEN, J. L. 1987. Better exception-handling in block-structured systems. IEEE Softw.
4, 3, 40–49.

KOENIG, A. AND STROUSTRUP, B. 1990. Exception handling for C11. In C11 Conference
Proceedings. USENIX, Berkeley, Calif., 149–176.

LEE, P. A. 1983. Exception handling in C programs. Softw. Pract. Exper. 13, 5, 389–405.
LEVIN, R. 1977. Program structures for exceptional condition handling. Ph.D. thesis, Car-

negie Mellon Univ., Pittsburgh, Pa.
LIN, K.-J. AND NATARAJAN, S. 1988. Expressing and maintaining timing constraints in

FLEX. In Proceedings of the 9th IEEE Real-time Systems Symposium. IEEE Computer
Society Press, Los Alamitos, Calif., 96–105.

LINDSAY, B. G. 1977. Exception processing in computer systems. Ph.D. thesis, Univ. of
California, Berkeley, Calif.

LISKOV, B. H. AND SNYDER, A. 1979. Exception handling in CLU. IEEE Trans. Softw. Eng.
SE-5, 6, 546–558.

MILNER, R. AND TOFTE, M. 1991. Commentary on Standard ML. MIT Press, Cambridge,
Mass.

MITCHELL, J. G., MAYBURY, W., AND SWEET, R. 1979. Mesa language manual. Tech. Rep.
CSL-79-3, Xerox Palo Alto Research Center, Palo Alto, Calif.

MOON, D. A. 1974. MACLISP reference manual. MIT AI Lab., Cambridge, Mass.
NACKMAN, L. R. AND TAYLOR, R. H. 1984. A hierarchical exception handler binding mecha-

nism. Softw. Pract. Exper. 14, 10, 999–1003.
NIEZGODA, S., HOLT, L., AND WOJCIECH, D. 1993. Some assembly required: NT’s structured

exception handling: The reality of structured exception handling in Windows NT may not
live up to its promise. BYTE 18, 12, 317–322.

NOBLE, J. M. 1968. The control of exceptional conditions in PL/I object programs. In
Proceedings of the IFIP Congress 68. C78–C88.

OUSTERHOUT, J. K. 1980. Partitioning and cooperation in a distributed multiprocessor
operating system: Medusa. Ph.D. thesis, Computer Science Dept., Carnegie-Mellon Univ.,
Pittsburgh, Pa.

PAULSON, L. 1991. ML for the Working Programmer. Cambridge University Press, Cam-
bridge, UK.

PRADHAN, D. K. 1996. Fault-Tolerant Computer System Design. Prentice-Hall, Upper Saddle
River, N.J.

RASHID, R. F. AND ROBERTSON, G. G. 1981. Accent: A communication oriented network
operating system kernel. In Proceedings of the 8th ACM Symposium on Operating System
Principles. ACM, New York, 64–75.

ROBERTS, E. S. 1989. Implementing exceptions in C. Tech. Rep. 40, Systems Research
Center, Digital Equipment Corp., Cupertino, Calif.

SCHNEIDER, S. A., CHEN, V. W., AND PARDO-CASTELLOTE, G. 1995. The ControlShell compo-
nent-based real-time programming system. In Proceedings of the IEEE Conference on
Robotics and Automation. 2381–2388.

STANKOVIC, J. A. 1988. Misconceptions about real-time computing—A serious problem for
next-generation systems. IEEE Comput. 21, 10, 10–19.

300 • Jun Lang and David B. Stewart

ACM Transactions on Programming Languages and Systems, Vol. 20, No. 2, March 1998.

STEWART, D. B. 1994. Real-time software design and analysis of reconfigurable multi-sensor
based systems. Ph.D. thesis, Carnegie Mellon Univ., Pittsburgh, Pa.

STEWART, D. B. AND KHOSLA, P. K. 1997. Mechanisms for detecting and handling timing
errors. Commun. ACM 40, 1, 87–93.

STEWART, D. B., SCHMITZ, D. E., AND KHOSLA, P. K. 1992a. The CHIMERA II real-time
operating system for advanced sensor-based control applications. IEEE Trans. Syst. Man
Cybernet. 22, 6, 1282–1295.

STEWART, D. B., VOLPE, R. A., AND KHOSLA, P. K. 1992b. Integration of real-time software
modules for reconfigurable sensor-based control systems. In Proceedings of the IEEE/
RSJ International Conference on Intelligent Robots and Systems. IEEE, New York, 325–333.

STEWART, D. B., VOLPE, R. A., AND KHOSLA, P. K. 1997. Design of dynamically reconfigurable
real-time software using port-based objects. IEEE Trans. Softw. Eng. 23, 12.

STRONG, D. M. AND MILLER, S. M. 1995. Exceptions and exception handling in computerized
information processes. ACM Trans. Inf. Syst. 13, 2, 206–233.

STROUSTRUP, B. 1991. The C11 Programming Language. 2nd ed. Addison-Wesley, Reading,
Mass.

TANG, L. S. 1992. A comparison of Ada and C11. In Proceedings of the Conference for
Industry, Academia and Government. ACM Press, New York, 338–349.

TEITELMAN, W. 1974. InterLISP reference manual. Xerox Palo Alto Research Center, Palo
Alto, Calif.

THEKKATH, C. A. AND LEVY, H. M. 1994. Hardware and software support for efficient
exception handling. In Proceedings of the 6th International Conference on Architectural
Support for Programming Languages and Operating Systems. 110–119.

WANG, T. 1994. Better C: An object-oriented C language with automatic memory manager
suitable for interactive applications. ACM SIGPLAN Not. 29, 12, 104–111.

WEINREB, D. AND MOON, D. A. 1981. LISP machine manual. 4th ed. MIT AI Lab., Cam-
bridge, Mass.

WILENSKY, R. 1984. Common LISPcraft. Norton.
WOLFE, V., DAVIDSON, S., AND LEE, I. 1991. RTC: Language support for real-time concur-

rency. In Proceedings of the Real-Time Systems Symposium—1991. IEEE Computer Society
Press, Los Alamitos, Calif., 43–52.

YEMINI, S. AND BERRY, D. M. 1985. A modular verifiable exception-handling mechanism.
ACM Trans. Program. Lang. Syst. 7, 2, 214–243.

Received December 1996; revised September 1997; accepted November 1997

Real-Time Software Technology • 301

ACM Transactions on Programming Languages and Systems, Vol. 20, No. 2, March 1998.

