
IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 23, NO. 12, DECEMBER 1997 759

Design of Dynamically Reconfigurable
Real-Time Software Using Port-Based Objects

David B. Stewart, Member, IEEE, Richard A. Volpe, Member, IEEE,
and Pradeep K. Khosla, Fellow, IEEE

Abstract —The port-based object is a new software abstraction for designing and implementing dynamically reconfigurable real-time
software. It forms the basis of a programming model that uses domain-specific elemental units to provide specific, yet flexible,
guidelines to control engineers for creating and integrating software components. We use a port-based object abstraction, based on
combining the notion of an object with the port-automaton algebraic model of concurrent processes. It is supported by an
implementation using domain-specific communication mechanisms and templates that have been incorporated into the Chimera
Real-Time Operating System and applied to several robotic applications. This paper describes the port-based object abstraction,
provides a detailed analysis of communication and synchronization based on distributed shared memory, and describes a
programming paradigm based on a framework process and code templates for quickly implementing applications.

Index Terms —Dynamic reconfiguration, real-time operating system, software architecture, object-based design, port-automaton
theory, reusable software, component-based design, evolutionary design, digital control systems, robotics.

—————————— ✦ ——————————

1 INTRODUCTION

HE port-based object (PBO) is a new software abstrac-
tion for designing dynamically reconfigurable real-time

software (DRRTS). It forms the basis of a programming
model that provides very specific guidelines for control
engineers to create and integrate DRRTS components, yet is
flexible for many types of control applications. The PBO is
supported by an implementation based on domain-specific
real-time operating system (RTOS) mechanisms. Together,
the PBO and RTOS mechanisms form a software frame-
work that supports the design and implementation of sen-
sor-based control systems.

The software framework was developed as part of the
Chimera RTOS Project [37] in the Advanced Manipulators
Laboratory at Carnegie Mellon University (CMU). It is an
offshoot of a project to develop reconfigurable robots [29].
We refer to the theory behind this framework as the Chi-
mera Methodology. That methodology, and the correspond-
ing RTOS mechanisms needed to support it, are the subject
of this paper

The following goals for a robotics programming envi-
ronment were initially set forth by several robotic projects
at CMU:

• Support reconfigurable robots;
• Integrate multiple sensors;

• Enable real-time sampling rates of up to 1,000 Hz;
• Change controllers dynamically;
• Execute code transparently on multiple processors; and
• Promote collaboration in the lab through code sharing.

The Chimera Methodology is the solution to meeting the
above goals. The key contributions of our solution are the
following:

• A detailed definition of a port-based object, which
combines the port-automaton algebraic model of
concurrent processes with the software abstraction
of an object, to obtain a model for creating and inte-
grating dynamically reconfigurable real-time soft-
ware components.

• Operating system services, including a PBO frame-
work process, a multiprocessor state variable com-
munication mechanism, and automated timing and
analysis of a configuration of PBOs, that create a
framework for straightforward implementation of
applications that use PBOs.

In addition, perhaps the most important criterion to
achieving our goals is to hide the real-time programming
and analysis details. The target users of our framework are
control engineers, who do not have extensive background
in real-time systems or software engineering. Their strength
lies in developing control systems; they want a high-level
tool that is easy to use and frees them from the low level
implementation details such as programming timers, ana-
lyzing schedulability, synchronizing processes, or commu-
nicating in a multiprocessor environments..

The background and the terminology used in this paper
are given in Section 2. The architectural components of the
framework are considered in Section 3. The focus of Sec-
tion 4 is the domain-specific communication in a multi-
processor environment. Details of the PBO framework

0098-5589/97/$10.00 © 1997 IEEE

¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥

• D.B. Stewart is with the Department of Electrical Engineering, and Insti-
tute for Advanced Computer Studies, University of Maryland, College
Park, MD 20742. E-mail: dstewart@eng.umd.edu.

• R.A. Volpe is with the Jet Propulsion Laboratory, California Institute of
Technology, Pasadena, CA 91109. E-mail: volpe@jpl.nasa.gov.

• P.K. Khosla is with the Department of Electrical and Computer Engineer-
ing and The Institute for Complex Engineered Systems, Carnegie Mellon
University, Pittsburgh, PA 15213. E-mail: pkk@cmu.edu.

Manuscript received 7 July 1993; revised 22 Nov. 1996.
Recommended for acceptance by A. Shaw.
For information on obtaining reprints of this article, please send e-mail to:
tse@computer.org, and reference IEEECS Log Number 101183.

T

760 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 23, NO. 12, DECEMBER 1997

process are given in Section 5. Favorably, the resulting
framework has many advantages that go beyond these
original goals. These other advantages, which fuel our cur-
rent research in this area, are summarized in Section 6.

2 BACKGROUND

2.1 The Origin of the Chimera Project:
Reconfigurable Robots

Robotic manipulators, such as those found on the produc-
tion line of car assembly plants, have always been created
with a fixed posture. However, depending on the task to be
performed, some postures are unsuitable. For example, a
manipulator is like a person’s arm. Consider the difficulty
in reaching under your car with your hand. It would be
much easier to reach if your arm and hand were connected
to the end of your foot. The same type of problem occurs
when using robots. Different robots are better able to per-
form different tasks. But using multiple robots is expensive.
To solve this problem, CMU developed the Reconfigurable
Modular Manipulator System (RMMS) [29]. In this system,
modular joints and links were created, such that they can be
assembled quickly (i.e., within minutes), to create robots
with various configurations. The genesis of the Chimera
Project was to create the software environment for the
RMMS [28].

We also identified other times when software needed to
be reconfigured alongside the hardware. This included
adding and removing sensors, changing the computing
hardware from single processor to multiprocessing envi-
ronments, and reusing generic software components with
nonreconfigurable robots.

The need for dynamic reconfiguration comes from the
need to change control algorithms on-the-fly, to support
more intelligent control strategies. However, in reviewing
the capabilities of our framework, other major advantages
of dynamically reconfigurable systems emerged, including
having the ability to implement real-time systems using
time-based decomposition, and the ability to perform
maintenance on-the-fly, especially for real-time systems
that cannot be shutdown, or are too expensive to reboot.
Additional benefits of our framework which go beyond the
initial goals are discussed in Section 6.

2.2 Modular Components vs. Reconfigurable
Components

Modular software is characterized by many guidelines, such
as a simple structure, data encapsulation, functional and in-
formational cohesion, separation of the interface specifica-
tion, and the internal behavior [21], [27], [33]. The degree of
modularity refers to a subjective measurement used to de-
scribe the extent that a software module follows these guide-
lines. For example, a system decomposed into modules may
be classified as “somewhat modular” or “highly modular,”
depending on a software engineer’s assessment of how well
the module meets the defined criteria [6].

Reconfigurable components are modular components
with the highest degree of modularity. Most important, it is a
module designed to have replacement independence. In a
modular system, there is often only one way to piece all the

components together, because the interfaces of modules that
need to be integrated are designed according to the other
modules they interact with. For example, if you write a C or
C++ module, and #include a .h file of another module, then
your module becomes dependent on the interfaces of that
other module. In contrast, interface specifications for recon-
figurable components are designed according to a predefined
standard, not according to the interfaces of other modules
with which it will be integrated. Interactions between com-
ponents are through these standard interfaces only.

As an example, Purtilo created the Polylith Software Bus
for designing reconfigurable distributed systems [22]. Soft-
ware components were made to interface with the bus, and
not with other modules. The bus was implemented as a
message passing transmission layer. However, the un-
bounded execution and blocking times of the transmission
layer prevents the approach from being used directly for
real-time systems. Nevertheless, Polylith demonstrates a
software method for achieving replacement independence.

2.3 Static Configurability vs. Dynamic
Reconfigurability

An important distinguishing feature between our approach
and many other efforts in configurable systems is that of
static configurability versus dynamic reconfigurability of soft-
ware components.

In statically configurable systems, reusable software
modules are selected and integrated off-line, and only exe-
cuted after configuration is complete. Examples of these
methods include real-time object-oriented program-
ming [5], [30], software synthesis [1], [26], [31], also known
as automatic code generation, interface adaptation [4], [13],
[18], [23], and the Polylith Software Bus mentioned above.
The static nature of these systems is a result of the need to
create or generate “glue” code to integrate the components
for each different configuration, then compile and link the
application with this new code.

In contrast, dynamically reconfigurable systems can be
modified on-line, without the need to recompile and relink
the application nor shutdown and reboot the system. For
example, the Regis environment [17] uses detailed software
models and operating system services to obtain dynamic
reconfigurability. Like Polylith, modules are defined ac-
cording to a standard interface, rather than to other mod-
ules. Regis then uses the Darwin configuration language,
based on the Conic [19] interface adaptation method, to in-
teractively structure the components using input and out-
put communication objects. Regis, however, has not been
applied to real-time system design. One of its primary lim-
iting factors for use in a real-time environment is that like
the Polylith transmission layer, communication objects are
based on message passing, with no considerations for exe-
cution or blocking times of processes. STER [2] is another
method based on Conic, which can be used to create recon-
figurable real-time systems. However, STER sacrifices the
ability to perform dynamic reconfiguration in favor of pro-
viding real-time guarantees.

The research we present in this paper uses a similar con-
cept as Regis and Polylith, by designing components ac-
cording to a predefined standard interface, rather than to

STEWART ET AL.: DESIGN OF DYNAMICALLY RECONFIGURABLE REAL-TIME SOFTWARE USING PORT-BASED OBJECTS 761

the interface of other modules. Like Regis, detailed software
models are defined, and operating system services are cre-
ated that directly support those models. Our work, how-
ever, concentrates on many of the real-time system issues
not addressed by the Polylith and Regis environments. The
major differences in our work include a software abstrac-
tion that is specific to control processes, predictable com-
munication and synchronization based on distributed
shared memory, a detailed software structure that enables
the automated timing of real-time properties of an applica-
tion, and a programming interface that is designed espe-
cially for control engineers. In Section 5.2, we also show
that static configurability is a subset of dynamic reconfig-
urability, and thus our solution provides the same benefits
as those that only support static configurability.

2.4 Reconfigurable Software vs. Generic Software
Reconfigurable software does not necessarily imply generic
software, as it is possible to have both hardware dependent
and application dependent components that are not ge-
neric, but are reconfigurable. In this section, we define our
classifications of reconfigurable software components. Ex-
amples of components are given later in Section 3.3.

A generic component is a module that is neither hardware
dependent nor application dependent. The component can
be configured for different types of hardware, and can be
used in different applications.

Hardware dependent (HD) components are software mod-
ules that can only be executed when specific hardware is
part of the system. Hardware dependent components can
be of two types:

Hardware dependent interface components are used to con-
vert hardware dependent signals into hardware independ-
ent data, such that other generic components can interface
with these modules. The HD interface component is an in-
terface to the application hardware such as robotic actua-
tors, switches, sensors, and displays. They differ from
RTOS I/O device drivers, because as processes with their
own thread of control, they have the same standard inter-
face as other software components, rather than being de-
fined as system calls which are called by other processes.

Hardware dependent computation components provide
similar functionality as generic components, but with better
performance or added functionality, due to hardware-
specific optimizations or modifications of the generic com-
ponent. Unlike the interface components, they do not com-
municate directly to hardware; they are simply dependent
on having specific hardware as part of the system.

Application dependent components are modules used to
implement the specific details of an application. As the
name implies, these components are not reusable across
different applications. Ideally, these components are elimi-
nated, since they must be redeveloped for each new appli-
cation. Modules initially defined as application compo-
nents, however, can often be transformed into generic com-
ponents by converting hard-coded information into vari-
able input. The input can then be obtained from the user
through a teleoperating device or keyboard, from a con-
figuration file, or from an external subsystem.

3 ARCHITECTURAL VIEW OF THE PORT-BASED
OBJECT

There are several approaches to attacking the problem of
creating a general programming environment for sensor-
based control that meets all the goals listed in Section 1.
One approach is to create the most general architecture in
which every possible situation that may arise is considered.
Generalizing every possible scenario is impractical. A re-
fined version of this approach is to create a domain specific
software architecture that can handle every possible situa-
tion that may arise within the domain. NASREM [3] is an
example of such an architecture for the robotics domain.
Our first attempt at creating a real-time processing envi-
ronment was based on the NASREM model [40]. However,
from our experience, using the NASREM model proved to
be very difficult, partially due to the complexity resulting
from trying to accommodate every possible scenario into a
rigid hierarchical structure, and partially because there is
no easy way to map from the theoretical architecture to a
practical implementation.

We use an alternate approach, based on domain-specific
elemental units. A framework is designed that uses these
elemental units as building blocks to incrementally create
larger, more complex applications. Various domain specific
software architectures can then be created using the
framework, depending on how these building blocks are
ultimately assembled.

We select the independent process as our elemental process
model.1 An independent process does not have to communi-
cate or synchronize with any other component in the system,
and thus integration is simple. A system that is comprised
only of independent components, however, is very limiting,
as there are no means to share data or resources. Neverthe-
less, this extreme emphasizes a desire to keep the framework
simple. Rather than trying to achieve the most general model
of a task, we attempt to get as close to this “ideal” simple case
of an independent process. The simpler each component, the
simpler it will be to integrate them.

Streenstrup, Arbib, and Manes formalized the algebra of
independent concurrent processes with their port-
automaton theory [32]. They model a concurrent process as
an independent automaton, which operates on the state of
the environment.

When a process needs information, it obtains the most
recent data available from its input ports. This port can be
viewed metaphorically as a window in your house; what-
ever you see out the window is what you get. There is no
synchronization with other processes and there is no
knowledge as to the origin of the information that is ob-
tained from this port.

When a process generates new information that might be
needed by other processes, it sends this information to its
output ports. An output port is like a door in your home;
you can open it, place items outside for others to see, then
close it again. As with the input ports, there is no synchro-
nization with other processes, and there is no knowledge as
to which processes might look at this information.

1. Although the term process is used throughout this paper, implementa-
tion in our RTOS is done using lightweight processes, which are also called
threads in many operating systems.

762 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 23, NO. 12, DECEMBER 1997

Lyons and Arbib [16] applied this model specifically to
robotics, and showed that a stable control system can be
achieved using a formally specified language they termed
Robot Schemas. As compared to the Robot Schemas
model, we extend the port-automaton model to include
multiple types of ports, and we create a framework for
directly implementing software components using this
computational model.

In addition to the independent process, we select the ob-
ject as an elemental software abstraction. As stated by
Wegner, an object is the atomic unit of encapsulation, with
operations that control access to the data [42]. The term
object does not imply “object-oriented design,” which is an
extension to objects to include classes and inheritance. The
references to objects in this proposal are thus classified as
object-based design, as defined by Wegner’s distinction of
that term and object-oriented design [43].

3.1 The Port-Based Object
We combine the algebraic model of a port automaton with
the software abstraction of an object, to create the port-
based object (PBO), shown in Fig. 1. In our diagrams, we
draw a PBO as a round-corner rectangle, with input and
output ports drawn as arrows entering and leaving the side
of the rectangle. Configuration constants are drawn as ar-
rows entering/leaving the top of the rectangle. Resource
ports are shown as arrows entering/leaving the PBO from
the bottom.

Fig. 1. Architectural view of a port-based object.

A PBO is an independent concurrent process, whose
functionality is defined by the methods of a standard ob-
ject. Communication with other modules is restricted to
its input ports and output ports, as defined by the port-
automaton theory. There is no explicit synchronization
with other processes. The configuration constants are used
to reconfigure generic components for use with specific
hardware or applications.

In addition to input and output ports, we also define re-
source ports, which are needed to create an environment for
multisensor integration. The resource ports connect to sen-
sors and actuators, via I/O device drivers, which are not
PBOs. The details of accessing the sensor or actuator are
thus encapsulated within the PBO, resulting in an HD inter-
face component (as defined in Section 2.4).

By modeling PBOs to have optional configuration con-
stants and resource ports, we have been able to use the
same PBO model for all types of reconfigurable compo-

nents. A sample library of PBO objects for robotic manipu-
lators is shown in Table 1. The library represents a subset of
PBOs that were created in our laboratory at CMU.

An important note about the functional descriptions of
the modules is that the framework is designed independent of
the granularity of functionality in each PBO. The software ar-
chitect who decomposes an application into modules de-
fines the granularity; our framework then provides the
mechanisms for quickly realizing each of these modules by
using the PBO model to implement them as reconfigurable
objects.

Similarly, the framework does not define the type or semantics
of the port variables. A variable type mechanism [38] is used
so that data transmitted over the ports can be any type. For
example, it can be raw data, such as input from an A/D or
D/A converter; processed data, such as positions and ve-
locities; or processed information, such as structures de-
scribing types and locations of objects in the environment.

In our implementation, a configuration file is used to
specify the information shown in the PBO Name and Ports
column of Table 1. For example, the configuration file
puma.rmod for module puma is shown in Fig. 2. The MODULE
line specifies the name of the object module file name
(extension omitted) of the code used for this PBO. Multiple
PBOs can specify the same code, for cases where multiple
versions of the same object, possibly each with its own
unique configuration, are desired. The DESC line gives a
one-line description of the module. The INVAR and OUTVAR
lines define the input and output ports, respectively, the
INCONST and OUTCONST lines define the configuration con-
stants. Since ASCII characters for the configuration file re-
strict us, we created our own conventions for mapping
names, as shown in Table 2. Note that these conventions are
personal preferences, and not specifications of the frame-
work. TASKTYPE is either periodic or aperiodic. The FREQ line is
the initial frequency at which a periodic process corre-
sponding to this PBO executes; the frequency can be
changed dynamically. The SVARALIAS line is used for map-
ping internal and external names, as described in the next
section. The LOCAL line marks the beginning of module-
specific information. Any information after this line is not
used by the PBO framework, but rather passed on to the
initialization code of the PBO. Lines beginning with # are
comments and are ignored.

3.2 Configurations
As defined by Dorf [7], “a control system is an interconnec-
tion of components forming a system configuration that
will provide a desired system response.” Each component
can be mathematically modeled using a transfer function,
which computes an output response for any given input
response. The port-automaton theory provides an algebraic
model for these types of control systems. By incorporating
the model into the PBO, our PBOs also provide this same
model suitable for control engineers. PBOs are configured
to form a control system in the same way as a control engi-
neer configures a system using transfer functions and block
diagrams. This approach allows us to satisfy an important
criterion for our DRRTS framework, to make a framework
for control engineers, rather than for software or real-time
system engineers.

STEWART ET AL.: DESIGN OF DYNAMICALLY RECONFIGURABLE REAL-TIME SOFTWARE USING PORT-BASED OBJECTS 763

TABLE 1
EXAMPLE OF SOFTWARE COMPONENTS IN A ROBOTIC MANIPULATOR PBO LIBRARY

Fig. 2. File puma.rmod: sample configuration file for puma PBO.

TABLE 2
SUMMARY OF INVARS, OUTVARS, AND CONFIGURATION

CONSTANTS FOR SAMPLE LIBRARY OF TABLE 1

764 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 23, NO. 12, DECEMBER 1997

A configuration is a set of PBOs which are interconnected
to provide the required open- or closed-loop system. In our
implementation, the set of PBOs can be specified in one of
four ways using a graphical software assembly tool, using a
command-line interface, through a network from an external
planning subsystem, or embedded using the C programming
language.

A configuration is valid only if for every PBO selected,
any data that it requires at its input ports is produced by
one of the other PBOs as output. As per the port-automaton
theory, the control engineer does not have to be concerned
with how data gets from the output of one PBO to the input
of another PBO. The communication is embedded in the
framework, such that it is transparent to the control engi-
neer. A configuration also cannot have two PBOs that pro-
duce the same output; otherwise there may be a conflict as
to which output should be used at a given time.

Port names are used to perform the bindings between
input and output ports. Whenever two PBOs exist with
matching input and output ports, the framework creates a
communications link from the output to the input. If neces-
sary, the output can be fanned into multiple inputs. Our
framework uses an internal/external name separation for
the ports, such that the name used to code the PBO can be
independent of the name used for linking that object to
other PBOs. The mapping between internal and external
name is done in the SVARALIAS lines of the configuration file
for each PBO. The left value represents the name used in
the configuration, and the right value is the name used in-
ternally by the PBO. If an SVARALIAS line is not specified,
then the default is that both the internal and external names
are the same.

The correctness of a configuration is verified analytically
using set equations, where the elements of the sets are the
state variables. If Xj is a set representing the input variables
of module j, Yj is a set representing the output variables of
module j, then a configuration is legal only if the following
two conditions are true:

< <
j

k

j j

k

jX Y

�
��

�
�� ¯
�
��

�
��

�
��

�
��1 1

 (1)

Y Y O i j i j k i ji j>4 9 � � � » �, for all , such that ,1 (2)

where k is the number of modules in the configuration.
Equation (1) represents our first condition that there must be
a corresponding output port for every input port. Equation
(2) ensures that two PBOs do not produce the same output.

3.3 Configuration Examples
In this section, we illustrate through examples how to
create configurations out of PBOs stored in a library.
Details of designing individual PBOs are given later in
Section 5. In our implementation, a configuration can be
assembled graphically using the Onika visual program-
ming environment [8].

3.3.1 Cartesian Control of the Reconfigurable Modular
Manipulator System

Fig. 3a shows a configuration, using modules from our
sample library shown in Table 1, to perform teleoperated

Cartesian control of the RMMS. The configuration of the
RMMS robot is not known beforehand. Rather, its configu-
ration is read from EPROMs embedded in the robot during
initialization. From that configuration, the rmms module
outputs the NDOF and DH configuration constants. Those con-
stants are used as input to the gfwdkin and ginvkin modules,
which can be configured for any robot based on NDOF and DH

[11]. A teleoperation interface is provided by the 6-DOF
trackball, and the cinterp module is used to generate inter-
mediate trajectory points for the robot, because the tball
module typically executes at a much lower frequency than
the other modules.

The software framework does not pose any constraints on
the frequency of each PBO. Rather, as defined by the port-
automaton theory, every PBO is an independent concurrent
process that can execute at any frequency. Whenever that
process needs data from its input ports, it retrieves the most
recent data available. When it completes its processing, it
then places any new data onto its output ports.

A configuration can be executed in either a single- or
multiprocessor environment. In a multiprocessor environ-
ment, the control engineer only needs to specify which
processor to use for each PBO. The communication between
PBOs and synchronization of their processes is otherwise
identical, and fully transparent to the control system engi-
neer, as detailed in Section 4.

3.3.2 Cartesian Teleoperation of a Puma 560
Suppose that a Puma 560 robot is to be used instead of the
RMMS. The rmms module can be replaced with the puma
robot interface module, as shown in Fig. 3b. Since the Puma
is a fixed configuration robot, its NDOF and DH parameters are
constant. Instead of reading these values from the robot,
they can instead be hard-coded into the puma module, and
output as configuration constants. There is no need to
change any other module, since the gfwdkin and ginvkin
modules will configure themselves during initialization for
the Puma based on the new values of NDOF and DH.

3.3.3 Improving Performance of a Puma 560
Generic components are useful for enabling rapid proto-
typing, but they may not always be computationally effi-
cient. For example, the computation of the forward kine-
matics based on the DH configuration constants and using
matrix operations will naturally be slower than performing
similar computations for a specific robot, such as the Puma
560. For a fixed-configuration robot, the DH parameters are
constant, and unnecessary computations (such as multiply
by zero or 1, or computing sin(S/2)) can be eliminated.

To improve the performance of an application, an HD
computation components can be created. The pfwdkin and
pinvkin modules are examples of such components. They
compute the forward and inverse kinematics specifically for
a Puma 560, and they execute faster than their generic
counterparts. It is then desirable to replace gfwdkin with
pfwdkin, and ginvkin with pinvkin, as shown in Fig. 3c,
whenever the puma HD interface component is used.

In order for an HD computation component to replace a
generic component, it must provide at least the same outputs
and must not require any additional inputs as compared to
the generic component. Even when an HD component is

STEWART ET AL.: DESIGN OF DYNAMICALLY RECONFIGURABLE REAL-TIME SOFTWARE USING PORT-BASED OBJECTS 765

used, it does not eliminate the usefulness of the generic com-
ponent. For example, in order to improve fault tolerance of
an application, the generic components can still be used as
standby modules, or as shown in Fig. 3d, it can execute in
parallel with the HD computation components, albeit at
lower frequencies, in order to provide consistency checks.

3.3.4 Autonomous Execution of a Puma 560
As an example of an application component, suppose that a
custom autonomous trajectory module ctraj is created to
replace the teleoperation module tball, as shown in Fig. 3e.
The component can be integrated into the system by defin-
ing it as a port-based object.

Even though a module is application dependent, it does
not have to be hardware dependent. Thus, if the hardware
for the application is changed, the application component
does not necessarily have to change. Fig. 3f shows this by
replacing rmms with puma, but not changing the trajectory
of the robot’s end effector, as defined by ctraj.

3.3.5 Cartesian Control of a Torque-Mode Robot
As a more elaborate example of a configuration, a telero-
botic Cartesian visual servoing subsystem is shown in Fig. 4
(note that these modules are from a different PBO library
than the one defined in Table 1). Input can come from ei-
ther a user through a trackball or from an external vision
subsystem. The port interfaces of each PBO can easily be
determined simply by looking at the inputs and outputs of
each object. Despite the seemingly complex communication
paths between objects, communication remains transparent
from the control system engineer, and lines are simply
drawn between matching input and output ports.

The configuration of PBOs is not the only part of a sub-
system. As shown in Fig. 5, PBOs can interface with device
drivers, external subsystems, software libraries, special pur-
pose processors, and user interfaces. In this paper, however,
we focus on the configurations of port-based objects, and the
associated communication, synchronization, and analysis.

(a) (b)

(c)
(d)

(e) (f)

Fig. 3. Example of component-based design using port-based objects. (a) example of Cartesian teleoperation of the RMMS using GCs; (b) exam-
ple of Cartesian teleoperation of a Puma 560 using GCs; (c) example of Cartesian teleoperation of a Puma 560 using HDCSs; (d) example of
fault-tolerant components, with co-existence of old and new software components; (e) example of application-specific autonomous execution of
the RMMS using GCs; (f) example of application-specific autonomous execution of a Puma 560 using HDCCs.

766 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 23, NO. 12, DECEMBER 1997

4 INTEROBJECT COMMUNICATION

Integrating software components such that all communica-
tion is performed in a predictable and timely manner is
perhaps the most difficult aspect of creating reconfigurable
real-time systems. In order to support the port-based object
model, we need a communication mechanism that meets
the following requirements:

• Support the port-automaton model of independent
processes. That is, read the input ports at the begin-

ning of each cycle to obtain the most recent data
available, and write to the output ports at the end of
each cycle.

• Disallow synchronization or communication between
processes except through ports.

• Target data transfers with low volume but at high
frequency (1,000 Hz).

• Have a simple and straightforward binding scheme
for communication links to dynamically reconfigure a
subsystem in bounded time.

Fig. 4. Example of module integration: Cartesian teleoperation.

Fig. 5. Complete software infrastructure for a sensor-based control subsystem.

STEWART ET AL.: DESIGN OF DYNAMICALLY RECONFIGURABLE REAL-TIME SOFTWARE USING PORT-BASED OBJECTS 767

• Fan an output into multiple inputs.
• Support transparent multiprocessing, so that the

processes that are communicating can be either on the
same or different processors, without any difference
in the communication.

• Allow communication between processes that may be
executing at different frequencies.

We designed a communication mechanism that meets all of
these requirements, based on the combined use of local and
distributed shared memory. The domain-specific solution
takes advantage of several of the characteristics of control
systems, such as the assumption on transfer rates and the
need to only read the most recent data, rather than all data.
The solution provides a level of performance and predict-
ability that has not previously been achieved using more
general message-passing mechanism.

Port communication has often (and more typically) been
implemented using some form of message passing. This al-
ternative was considered, but not selected for several reasons:

• Using messages, we could not support the port-
automaton theory because the most recent data is not
always readily available. For example, if the process
producing the data is faster, then the messages may
be queued, and the message received by the con-
sumer might not contain the most recent data.

• Fanning an output to multiple inputs is difficult be-
cause it requires a message to be duplicated for each
input or requires a more complex mechanism to ensure
that messages are not deleted until all processes need-
ing it have used it. Duplicating messages based on the
number of recipients also violates the port-automaton
theory, which states that a process is unaware of the
destination of the data on its output ports.

• The overhead with sending messages, especially in a
multiprocessor environment, is much higher than that
achievable using shared memory. This factor is espe-
cially important considering some data must be trans-
ferred 1,000 times per second.

These drawbacks of message passing systems led to our
design of a mechanism based on distributed shared mem-
ory. Our work focuses on loosely coupled shared memory
architectures.

4.1 State Variable Communication
The communication between PBOs is performed via state
variables stored in global and local tables, as shown in
Fig. 6. Every I/O port and configuration constant is defined
as a state variable (SVAR) in the global table, which is
stored in shared memory.

A PBO can only access the local table, where only the
subset of data from the global table that is needed by that
PBO is kept. Since every PBO has its own local table, no
synchronization is needed to read from or write to it. A
PBO process can, thus, execute independently of other
processes by using the data in its local table. Consistency
between the global and local tables is maintained by the
SVAR mechanism, as detailed in the remainder of this sec-
tion. As an example, Fig. 7 shows the contents of the global
and local tables for the sample configuration that was illus-
trated in Fig. 3a.

Support for SVAR communication has been built into our
framework, such that updates of the local and global tables
occur at predetermined times only. Configuration constants
are updated only during initialization of the PBO. The state
variables corresponding to input ports (which we call
INVARS) are updated prior to executing each cycle of a peri-
odic PBO, or before processing each event for an aperiodic
PBO. During its cycle, a PBO may update the state variables
corresponding to output ports (which we call OUTVARS) at
any time. These values are only updated in the global table
after the PBO completes its processing for that cycle or event.
All transfers between the local and global tables are block
transfers (i.e., using a routine like UNIX’s memcpy()). Ensur-
ing the integrity of the data is a matter of ensuring that the
block transfers are performed as critical sections.

Although there is no explicit synchronization or com-
munication among processes, we must ensure that accesses

Fig. 6. Structure of state variable table mechanism for port-based object integration.

Fig. 7. Contents of global and local tables for sample configuration shown in Fig. 3a.

768 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 23, NO. 12, DECEMBER 1997

to the same SVAR in the global table are mutually exclu-
sive, which creates potential implicit blocking. The locking
mechanism we use enables us to maintain the autonomous
execution model of the PBO, while also ensuring the integ-
rity of the communication.

4.2 Locking the Global SVAR Table
The method we use to lock the global table and preserve the
autonomous execution model of the PBO is based on the
assumption that the amount of data communicated via the
ports on each cycle of a PBO is relatively small. That is, each
INVAR or OUTVAR is only a few tens to a few hundreds of
bytes. This is in contrast to communication systems where
images may require many thousands or millions of bytes
per cycle. The exact value of what we mean by “small” de-
pends on a particular configuration, and is quantified as
part of our analysis in Section 4.4. For this reason, our
framework, which defines objects that are specific to the
control systems domain, cannot directly be applied to a
general communication system. However, as was shown in
Fig. 4, we can use the external subsystem interface to inter-
act with a communication system.

Processes executing on different CPUs can access the
global table, and therefore a multiprocessor solution for
locking the table is required. The type of multiprocessor
synchronization we require for the global SVAR table has
been addressed in [24]. The shared memory protocol (SMP) is
presented as an extension of the single processor priority
ceiling protocol [25]. The protocol involves defining global
semaphores for locking the global shared memory and
placing priority ceilings on accessing the semaphores to
bound the waiting time of higher priority jobs.

Unfortunately, there are several problems that prevent
the use of SMP within our framework:

• This method assumes that the local scheduling on
each processor is the rate monotonic algorithm, with
static priorities. As discussed in [39],it is desirable to
use mixed or dynamic priority algorithms for sched-
uling reconfigurable systems, for which the protocol
is not suitable.

• One assumption of the SMP is that the delay to access
the backplane bus from any processor is negligible
compared to the task execution times. Unfortunately
this is usually not the case; buses like the VMEbus are
implemented using a static-priority processor as-
signment that is not under the control of software.
Therefore, the time to wait for the bus can be signifi-
cant if a process is on a low-priority CPU.

• There is significant overhead associated with imple-
menting SMP that prevents its use with control appli-
cations requiring frequencies over 1,000 Hz. The
complexity and overhead of SMP can be reduced sig-
nificantly for the port-based communication by se-
lecting a single lock for the entire table, instead of a
separate lock for each state variable. Selecting a single
lock for the entire table is not as restrictive as it seems,
since a shared bus connects the shared memory to lo-
cal memory. Even if multiple tasks have separate
locks only one of them can physically access the
shared memory at once; other tasks must wait for the
bus even while in their critical section.

An alternate solution for synchronizing access to the
global state variable table is to use spin-locks [20]. When a
task must access the global table, it first locks the processor
on which it is executing. Locking the CPU ensures that the
task does not get swapped out while holding the critical
global resource. The task then tries to obtain a global lock
by performing an atomic read-modify-write instruction,
which is supported by most hardware processors. If the
lock is obtained, the task reads or writes the global table
then releases the lock, still while being locked into the local
CPU. It then releases its lock on the local processor. If the
lock cannot be obtained because it is held by another task,
then the task spins on the lock. It is guaranteed that the task
holding the global lock is on a different processor, and will
not be preempted, thus it will release the lock shortly.

In theory, locking the CPU can lead to possible missed
deadlines or priority inversion. However, considering the
practical aspects of real-time computers, it is not unusual
that a real-time microkernel locks the CPU for up to
100 Psec in order to perform system calls such as handling
timer interrupts, scheduling, and performing full context
switches [37]. Furthermore, many RTOS are created such
that periods and deadlines of processes are rounded to the
nearest multiple of the system clock since more accurate
timing is not available to the scheduler. In these systems, if
the total time that a CPU is locked to transfer a state vari-
able is small as compared to the resolution of the system
clock, then there is negligible effect on the predictability of
the system due to this mechanism locking the local CPU.

In comparing this method to SMP, the lock can be viewed
as a single global semaphore, and since all tasks can access it,
its priority ceiling is constant, and is equal to the maximum
task priority in the system. Since there is only one lock there
is no possibility of deadlock. A task busy-waits with the local
processor locked until it obtains the lock and goes through its
critical section. In Section 4.4 it is shown that for configura-
tions where the volume of data transferred between objects is
small, there is a bounded waiting time for obtaining the
global lock, even on hardware such as the VMEbus that only
has fixed priority bus arbitration.

4.3 Initialization
The global table is initialized in shared memory based on
the contents of an SVAR configuration file. The file includes
the names and types of all the INVARS, OUTVARS, and con-
figuration constants. A default configuration should be
provided in conjunction with each PBO library, which de-
fines the name, type, and size of each variable. For example,
Table 2 shows the information that would be included in
the SVAR configuration file for the library that was shown
in Table 1. For any application, a programmer may update
this default configuration file by adding new variables to it
if they make use of the SVARALIAS facility to change some of
the port names, or by deleting variables that are not re-
quired for the application.

A local table is only created and initialized when a PBO is
created, and contains those SVARs given in the .rmod con-
figuration file (as was shown in Fig. 2). Information about the
type and size of those SVARs is retrieved from the global
table, which is why it did not have to be specified in the .rmod
file. For each SVAR, a pointer is also stored in the local table,

STEWART ET AL.: DESIGN OF DYNAMICALLY RECONFIGURABLE REAL-TIME SOFTWARE USING PORT-BASED OBJECTS 769

which points to the corresponding SVAR in the global table,
and used during the block transfer operations.

Configuration constants create a necessary order of ini-
tialization for PBOs. Any PBO that has an output configu-
ration constant (which we call OUTCONST), must be initial-
ized before any other PBO with the same constant as an
input (called an INCONST) is created. INVARS and OUTVARS,
on the other hand, do not have a necessary order, since in
control systems they often form a closed loop system, and
thus the order of initialization of PBOs is not obvious. Be-
yond the necessary order for constants, ordering initializa-
tion of PBOs in a closed loop system to ensure stability of
the control system is generally application specific, and
thus not discussed further within our framework. Our
framework, however, can support any order of initializa-
tion of the PBOs, as dictated by the application.

4.4 Analysis of SVAR Mechanism
In this section, we show that on a fixed priority hardware
platform such as the VMEbus, it is possible to provide pre-
dictable high performance communication using the SVAR
mechanism. The analysis assumes that data from the input
ports is transferred once from the global table to the local
table at the beginning of a process’ cycle, and data destined
for the output ports is transferred from the local table to the
global table upon completion of the process’s cycle. The
PBO framework ensures that communication occurs at
these specified times, as described in Section 5.

4.4.1 Transfer Times
To ensure predictable communication, the time required to
transfer data between the local and global tables for each
task must be computed. Let tIP be the time required to trans-
fer the INVARS and tOP be the time required to transfer the
OUTVARS of a PBO P, assuming no waiting for the bus.
These values are computed as:

t V n V R x

t V n V R y

IP IP a
i

n

Pi

OP OP a
i

n

Pi

IP

OP

 � �

 � �

Ç

Ç

1
1

1
1

()

()

 (3)

where V1 is the overhead for locking and unlocking the ta-

ble, excluding waiting time for the bus. Va is the overhead

of transferring each additional variable; nIP/nOP are the
number of INVARS/OUTVARS for object P; x xPi Po/ number
of transfers required for the INVAR/OUTVAR i of object P; and
R(x) = time required for x transfers. V1, Va, and R(x) are de-
pendent on the speed of the hardware. These values can be
measured initially for each type of hardware supported,
then used by a configuration manager for estimating com-
munication times. As an example, V1, Va, and R(x) were
measured in our laboratory. The breakdown of times for an
Ironics IV3230 single board computer [9] with a 25 MHz
MC68030 processor on a VMEbus is shown in Table 3. A
VMETRO 25 MHz VBT-321 VMEbus analyzer [41] was
used to time the communication, and provided a resolution
of better than 1 Psec. The global state variable table was
stored within the dual-ported memory of a second IV3230.

Note that the value of R(x) is not linear. This is due to the
underlying block copy routine, which has a better average
time per transfer for larger transfers. Through interpolation,
different transfer sizes can be estimated, and more meas-
urements of R(x) with different values of x can give more
accurate results. However, for purposes of discussion and
examples in this paper, the values shown are sufficient.

The values in Table 3 can be substituted into (3) to esti-
mate the transfer times for each port-based object. As an
example, consider the joint control of a robot with built-in
controllers, whose configuration is shown in Fig. 8, and
assume that NDOF = 6. The values of tIP and tOP for each
module were estimated. These estimates were then com-
pared to actual transfer times measured with the VMETRO
analyzer. As can be seen in Table 4, the estimates and actual
times are sufficiently close to use the estimates for further
analysis. This aspect is important since it is not desirable,
and perhaps not feasible, to measure the communication of
every software module for every type of hardware. For
simplicity, (3) assumes that V1 is always present, even if n is
0, such as nIP for jtball. In practice, if there are no transfers
to be made, the global table is not locked. As a result, the
actual measured time is very small and accounts for over-
head of testing if a transfer must be made.

4.4.2 Waiting Time for Global Table Lock
Until now, we assumed there is no contention for the global
table’s lock. Next, we compute the worst-case waiting time
for the lock by each task. Let Lpj be the maximum time that
task p on processor j will hold the global table lock. There-
fore Lpj = max(tIp, tOp). Let Mj be the longest time that the
global lock is held by any task on processor j, then

M Lj pj p

N j �
�

�
��max 1 (4)

where Nj is the number of tasks on processor j.
Ideally, if multiple tasks are trying to obtain the lock, the

one with the highest priority succeeds. Unfortunately, on a
shared bus where each processor has a fixed priority, such
as the VMEbus that is not using round-robin bus arbitra-
tion, that is not the case. Instead, the task inherits the prior-
ity of the processor. For the remainder of the analysis, as-
sume that the hardware is a fixed-priority VMEbus, such
that the lowest numbered processor has highest priority.
For different hardware configurations, the following analy-
sis may have to be redone, and perhaps a different form of
locking for the global table may be appropriate.

Any task on processor k attempting to lock the global ta-
ble must wait for tasks on all higher priority processors.
Furthermore, the task may also have to wait for a task cur-
rently holding the lock on a lower priority processor. Based
on the locking mechanism described in Section 4.2, only one
task on any processor can request the lock at once, and
therefore there is no contention with other tasks on the
same processor.

In Section 4.2, an assumption was made that the state
variable table mechanism was valid as long as the amount
of data to be transferred is small. That assumption is now
quantified, as the volume of data affects the maximum
waiting time of each task. Let Wk be the worst case waiting

770 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 23, NO. 12, DECEMBER 1997

time for any task on processor k. Since this is waiting time
and not blocking time (a waiting task is in the running state,
a blocked task is suspended) Wk can be added to the worst-
case execution time of a task. It is computed as

W W Wk kLO kHI � (5)

where WkLO and WkHI are the maximum time the task may
have to wait for a task to release the lock on a lower or
higher priority processor, respectively. WkLO is computed
simply as the longest time any single task on a lower prior-
ity processor may hold the lock. Therefore,

W MkLO j j k
r

 �

max 14 9 (6)

where r is the number of processors.
Next, WkHI is computed. For k = 1, there are no higher

priority processors, thus W1HI = 0 and W1 = W1LO. For k > 1,
the potential locking of the table for all tasks on processors
1 to k � 1 must be considered. Under the assumption that
the volume of data is small, the bandwidth required to
transfer all the data is much less than the total bandwidth
of the bus. Therefore, in the worst case, all tasks on higher-
priority processors may require the lock at the same time.
WkHI is thus computed as the sum of the waiting time of all
tasks on higher-priority processors as:

W t tkHI
j

k

i

N

I ij O ij

j

 �

�

Ç Ç
1

1

1
, ,4 9 . (7)

The notation tI,ij is the same as tIP, where a process P is re-
ferred to by the processor number i and task ID j. As an
example, (5), (6), and (7) were applied to the sample con-
figuration that was shown in Fig. 8, with estimated locking
times as were shown in Table 4. Task periods and cycle
times (before adding maximum waiting time) were arbi-
trarily assigned to illustrate the computations. Assuming
that puma_pidg and grav_comp are on processor 1, and diff
and jtball are on processor 2, the resulting computations are
shown in Table 5. The adjusted execution time should be
used in a schedulability analysis.

In our applications, the average case is significantly
lower than the worst case. To compensate, a soft real-time
scheduling algorithm can be used to schedule the less criti-
cal tasks on lower priority processors [39], while hard real-
time critical tasks should be placed on the high-priority
processors. Another consideration for assigning tasks to
processors is the volume of data that needs to be trans-
ferred. The computations of Wk show that it is preferable
for tasks producing a low volume of data to be placed on
higher priority processors, since that significantly reduces

TABLE 3
BREAKDOWN OF VMEBUS TRANSFER TIMES AND COMMUNICATION OVERHEAD

TABLE 4
COMPARISON OF ESTIMATED AND ACTUAL TRANSFER TIMES

TABLE 5
SAMPLE COMPUTATIONS OF WORST EXECUTION TIME (ALL TIMES IN msec)

STEWART ET AL.: DESIGN OF DYNAMICALLY RECONFIGURABLE REAL-TIME SOFTWARE USING PORT-BASED OBJECTS 771

WkHI for tasks on lower priority processors. A different as-
signment of tasks to processors can lead to very different
results. A configuration manager can perform the above
analysis for various configuration possibilities, in order to
optimize the global allocation of processes to processors.

5 FRAMEWORK PROCESS FOR IMPLEMENTING
PORT-BASED OBJECTS

The analysis in previous sections was performed with an
underlying assumption that the framework handles com-
munication and synchronization. In this section, we look at
the details of the PBO, and show how we have imple-
mented the framework as part of the RTOS. This allows a
control engineer to easily implement individual software
components using the PBO model.

5.1 An Inside-Out Programming Paradigm
Creating the code for PBOs is an “inside-out” programming
paradigm as compared to traditional coding of real-time
processes, as shown in Fig. 9. The grey area shows RTOS
code, while the black areas show the user code. The tradi-
tional approach is used by most current RTOS; processes
are created, each with their own main() (or equivalent func-
tion name). The process executes user code and controls the
flow of the program. It invokes the operating system, typi-
cally via a system call, whenever an OS service is required.
OS services include communication, synchronization, pro-
gramming timers, and creating new processes.

The PBO method, on the other hand, provides a consis-
tent structure for every process, and thus operating system
services such as communication, synchronization, sched-
uling, and process management are performed in a predict-
able manner. Only when necessary, the operating system
calls a PBO’s method to perform user-defined functions.
This predefined structure also allows the RTOS to continu-
ally measure the execution time of the PBO code, using an
automated task profiling mechanism as described in [35].

A PBO process is realized by creating a single, standard
process, which we call the framework process (pboframe()).
Every process in the system uses this same framework, and
takes a PBO as an argument. The PBO defines the module-
specific user code, the I/O ports and configuration con-
stants, the type of process (e.g., periodic process or aperiodic
server), and the timing parameters such as frequency, dead-
line, and priority.

5.2 The Framework Process
The framework process implements a finite state machine
with four states, as shown in Fig. 10. The states are shown
as bold ellipses, and are NOT_CREATED, ON, OFF, and ERROR.

State transitions are shown in the diagram as process flow
diagrams. A state transition is triggered by a signal (drawn
as solid bars). Signals may originate from interrupts, a
planning module, an external subsystem, or from the user
through a graphical user interface. In response to a signal, a
transfer is made between the local and global SVAR tables
to read INCONSTS or INVARS, then one of the user-defined
functions is called, followed by another transfer between
the local and global SVAR tables, to write OUTCONSTS or
OUTVARS. State variable transfers are shown as ovals, while
the user-defined functions, which form the PBO, are shown
as rectangles.

The PBO method that is called depends on the state of
the process and the signal that is received. For example, if a
PBO is in the ON state, and it receives a wakeup signal, then
it will execute the cycle method and remain in the ON state.
On the other hand, if the PBO is in the ON state, and re-
ceives the kill signal from an a configuration manager, then
it will execute the off method, followed by the kill method,
then enter the NOT-CREATED state.

The framework process, as shown, evolved over several
years as we designed and tested many variations, in order to
obtain a common program structure for all software compo-
nents. The diagram represents the most recent revision in the
evolution of the structure. The detailed PBO framework im-
plies many design decisions, as described next

5.2.1 Notes about Framework Process
Despite the seeming complexity of the framework, dis-
secting it into pieces shows that it is indeed rather simple.
In the steady state, PBO processes are all in the ON state,
and executing their cycle method once per cycle or event,
going back to sleep until the next wakeup signal. Note that
the only difference between a periodic process and an
aperiodic server is the source of the wakeup signal. For a
periodic process, the wakeup signal is received from the
timer. For the aperiodic processes, the process blocks on a
semaphore, message, or event, as defined by the sync
method of the PBO.

The autonomous nature of the PBO allows the most
popular scheduling algorithms, such as the rate monotonic
static priority [15], earliest-deadline-first [15], or maximum-
urgency-first dynamic priority scheduling [39] algorithms,
to be used to schedule PBOs. The control systems designer
only needs to specify the frequency of the cycle routine for
each PBO. Determining the optimal set of frequencies is a
control systems issue, however, and beyond the scope of
this paper.

As a result of the underlying timing error detection and
handling mechanism built into the Chimera RTOS [36],
aperiodic servers can use the same fundamental structure
as periodic processes. The framework can define aperiodic
processes as either deferable or sporadic servers, and use
them with either the rate monotonic static priority or
maximum-urgency-first dynamic priority scheduling algo-
rithms to ensure predictable scheduling.

The remainder of the framework handles the initializa-
tion and termination, reconfiguration, and error handling
for the PBO. To support dynamic reconfiguration, a two-
stage initialization and termination is used. High-overhead

Fig. 8. Joint control of a robot manipulator with built-in PID controller.

772 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 23, NO. 12, DECEMBER 1997

Fig. 9. Comparison of POSIX real-time processes and port-based object programming paradigms.

Fig. 10. Finite state machine for the port-based object framework process. State transitions are shown as process flow diagrams.

STEWART ET AL.: DESIGN OF DYNAMICALLY RECONFIGURABLE REAL-TIME SOFTWARE USING PORT-BASED OBJECTS 773

initialization of a new process can be performed upon sys-
tem startup, or in the background, in preparation for being
activated. The initialization includes creating a process’s
context, dynamically allocating its memory, creating a local
table and translating I/O port symbols into pointers to the
global table, and calling the user-defined init method. The
process then waits in the OFF state, and can be viewed as
being in a standby mode for a dynamic reconfiguration.
When an on signal is received, the local table is updated to
reflect the current state of the system, and execution begins.

Perhaps one of the keys to supporting dynamic reconfigu-
ration is handling the initialization of the port variables. Be-
fore calling the on method, it is necessary to read the OUTVARS

in addition to the INVARS. This solution resulted after many
trials with initialization, trying to determine the best way to
ensure that when a process is activated, its view of the envi-
ronment is correct. Since the process is not previously exe-
cuting, it is possible that some other process is generating
those OUTVARS. In general, a process that outputs OUTVARS

knows the same values on the subsequent cycle because they
are in the local table. However, in a process’ first cycle, this is
not the case. Ultimately, rectifying the situation is a simple
matter of also reading the OUTVARS during activation, thus
updating the local table to properly reflect the state of the
system. The on method of the process is then called, such that
if necessary, these OUTVARS can be updated, before the proc-
ess enters the ON state.

The time for a process P to be activated, Con,P is bounded,
if the user-defined on method is bounded. It is,

C t t Con P IP OP on P OS, , � � � �2 ' (8)

where tIP and tOP are defined in (3), �Con P, is the execution

time of the user-defined on method of process P, and 'OS is
the operating system overhead for sending a signal and
performing a context switch. Typical values for Con P, in our

system were in the order of (100 Psec + �Con P,).
The deactivation of a process is similarly time-bounded.

Thus, the time to perform a dynamic reconfiguration is the
sum of the time to activate new processes and deactivate
running processes that form the differential between the old
and new configurations. Since it is generally possible to acti-
vate and deactivate several processes within a millisecond, it
is possible to execute one controller module one cycle, fol-
lowed by executing a different controller on the next cycle.

As a precautionary measure in case of transient overload
during a dynamic reconfiguration, an illegal configuration
flag is temporarily set, which indicates that not all required
output is being produced. The framework provides this
mechanism primarily for use of HD interface components
that send output to actuators. The most critical processes in
the system, which should have a priority higher than the
processes being reconfigured, can test this flag, and if it is
set, can choose to ignore its INVARS, and go into locally sta-
ble execution. For example, a robot interface module can
select to keep the velocity of the joints constant, until the
dynamic reconfiguration is complete, signaled by the illegal
configuration flag being reset. Determining when it is safe
to perform a dynamic reconfiguration is beyond the scope
of the framework. The framework provides the mecha-

nisms only. Developing policies that ensure stable execu-
tion during a reconfiguration is usually application specific.
In our experiments, we use a conservative approach of en-
suring that the robot is temporarily at rest (i.e., velocity and
acceleration are both zero before dynamic reconfiguration
begins). Further research is required in order to develop
more aggressive policies.

Error detection and handling is implemented using a
global error handling mechanism, as described in [37].
Whenever an error occurs, an error signal is generated, and
a user-defined error handler is called. The framework
automatically initializes this error handler to be the error
method of the PBO. The purpose of the error method is to
attempt automated recovery. If that fails, the process goes
into the ERROR state, indicating that user intervention is re-
quired. Once the user attempts to fix the problem, a clear
signal is generated. The clear method checks that the error
was indeed fixed. If it was, then the process returns to the
OFF state and can be reactivated; if not, the process remains
in the ERROR state. See [14] for further research into error
handling for PBOs.

Whenever one or more processes are in the ERROR state,
the illegal configuration flag described above is set. This
again indicates to critical modules that there exists at least
one other module in the configuration not producing out-
put as required, and therefore the INVARS of that process
may not have been properly computed.

During a dynamic reconfiguration, a new process can be
created in the background, such that it updates some of the
configuration constants. Before this process can be acti-
vated, some of the running processes might need to be ini-
tialized, if they have configured themselves previously
based on different INCONSTS. In this case, a reinit signal is
sent to those processes that have the updated OUTCONST as
an INCONST. The new process can only be activated after
processes have reinitialized.

Statically configurable processes are subsets of dynami-
cally reconfigurable processes. These processes go directly
to the ON state after initialization. Therefore, if the OFF state
is removed, and any transition emanating from the OFF

state removed, the result is a framework process that can be
used for statically configurable systems. In our applications
requiring only static configurability, however, we still de-
fine the modules as dynamically reconfigurable, but send
an on signal immediately after the init signal.

5.3 Coding a Port-Based Object
The structure of a PBO is designed so that a control engi-
neer can simply define module-specific code, and not be
concerned with any of the details of creating a real-time
process. A template can be created for any specific PBO,
given an .rmod file, as was shown in Fig. 2. The control en-
gineer then only has to fill in the blanks, which is to define
the methods of the PBO to perform the module-specific
functionality. As an example, Fig. 11 shows the template
and control engineer’s code for the tball module. The
regular font shows the template code for tball, given the
information in Table 1, while the bold font shows code
written by the control engineer.

774 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 23, NO. 12, DECEMBER 1997

The encapsulated data of the object is stored in the
structure called tballLocal_t. Part of this structure is gener-
ated by the framework, to include pointers to the local
SVAR table. The remainder of the structure is user-
definable, so that the control engineer can place any
“global” variables for their PBO. The data in this structure
is made available to every method. The methods all have
specific names, which is of the form xxxYyyy. xxx repre-
sents the module name, and Yyyy represents the method
name, as was depicted in Fig. 10.

The rigid process structure provides strict guidelines for
control engineers, telling them exactly where to put what
kind of code. It removes any guesswork, reduces the amount
of code they must write, and guarantees that synchronization
and communication works from the beginning.

6 DISCUSSION

While our DRRTS solution meets the requirements set forth
in Section 1, we have since realized many other, and in many
cases more important, potential benefits of the solution:

Rapid development through component-based design.
Component-based design minimizes the amount of new
code that must be written when an application is devel-
oped. A framework for DRRTS eliminates the need to write
any “glue” code, thus going a step beyond reuse of modu-
lar components.

Hardware/software co-design. One form of system-level
design of embedded applications uses a mixture of hard-
ware and software components [10]. The co-design ap-
proach allows the hardware and DRRTS components to be
tightly coupled throughout the design process.

Tele-configuration of services. Telecommunication com-
panies, such as cable, satellite TV, and telephone, are in-
creasingly transmitting control information over the data
transmission medium. DRRTS components can be used to
dynamically change the configuration, hence the services
provided, or to perform remote upgrades and maintenance
of existing services.

Evolutionary design. Complex systems may require
continuous hardware and software upgrades during the
lifetime of the system in response to technological ad-

Fig. 11. Sample .c code for tball PBO. Template code uses regular font; user code is in bold .

STEWART ET AL.: DESIGN OF DYNAMICALLY RECONFIGURABLE REAL-TIME SOFTWARE USING PORT-BASED OBJECTS 775

vancements, environmental change, or alteration of system
goals. DRRTS components are designed to undergo such
evolution, as individual modules can be replaced incre-
mentally and independently.

Flexibility for fine-tuning after implementation. A
DRRTS framework offers considerable flexibility for fine
tuning an application to “make it work.” It can have recon-
figuration options such as switching between static and
dynamic scheduling algorithms, using time-based decom-
position to improve CPU utilization, and easily converting
interrupt handlers to aperiodic servers and vice versa.

Increased reliability through automated analysis. The
internal structure of a DRRTS component is well defined,
based on a theoretical model. This structure allows for the
automation of such things as performance measurement,
configuration verification, and scheduling analysis.

These additional benefits fuel our current research effort
into developing advanced RTOS technology for supporting
dynamically reconfigurable systems.

REFERENCES

[1] B. Abbott et al., “Model-Based Software Synthesis,” IEEE Software,
vol. 10, no. 3, pp. 42-52, May 1993.

[2] J.M. Adan and M.F. Magalhaes, “Developing Reconfigurable
Distributed Hard Real-Time Control Systems in STER,” Algo-
rithms and Architectures for Real-Time Control, Proc. IFAC Workshop,
pp. 147-152, Oxford: Pergamon Press, Sept. 1991.

[3] J.S. Albus, H.G. McCain, and R. Lumia, NASA/NBS Standard Ref-
erence Model for Telerobot Control System Architecture (NASREM),
Technical Note 1235, Nat’l Inst. of Standards and Technology, Gaith-
ersburg, Md., Apr. 1989.

[4] B.W. Beach, “Connecting Software Components with Declarative
Glue,” Proc. Int’l Conf. Software Eng., pp. 11-15, Melbourne, Aus-
tralia, IEEE Press, 1992.

[5] T.E. Bihari and P. Gopinath, “Object-Oriented Real-Time Systems:
Concepts and Examples,” Computer, vol. 25, no. 12, pp. 25-32, Dec.
1992.

[6] B.A. Blake and P. Jalics, “An Assessment of Object-Oriented
Methods and C++,” J. Object-Oriented Programming, vol. 9, no. 1,
pp. 42-48, Mar.-Apr. 1996.

[7] R.C. Dorf, Modern Control Systems, third edition. London: Addi-
son-Wesley, 1980.

[8] M.W. Gertz, D.B. Stewart, and P.K. Khosla, “A Human Machine
Interface for Distributed Virtual Laboratories,” IEEE Robotics and
Automation Magazine, vol. 1, no. 1, pp. 5-13, Dec. 1994.

[9] IV3230 VMEbus Single Board Computer and MultiProcessing Engine
User’s Manual, Computer Systems Division, Ironics Inc., Ithaca,
New York, 1991.

[10] A. Kalavade, “System-Level Codesign of Mixed Hardware-
Software Systems,” doctoral dissertation, Univ. of California, Ber-
keley, 1995.

[11] L. Kelmar and P.K. Khosla, “Automatic Generation of Forward
and Inverse Kinematics for a Reconfigurable Modular Manipula-
tor System,” J. Robotics Systems, vol. 7, no. 4, pp. 599-619, Aug.
1990.

[12] D. Kinny, M. Georgeff, and A. Rao, “A Methodology and Model-
ing Technique for Systems of BDI Agents: Agents Breaking
Away,” Lecture Notes in Artificial Intelligence LNAI 1038. Berlin:
Springer-Verlag, 1996.

[13] D.A. Lamb, “IDL: Sharing Intermediate Representations,” ACM
Trans. on Programming Languages and Systems, vol. 9, no. 3, pp.
297-318, July 1987.

[14] J. Lang, “A Distributed and Time-Bounded Exception Handling
Mechanism for Dynamically Reconfigurable Real-Time Software,”
masters thesis, Dept. Electrical Engineering, Univ. of Maryland,
College Park, 1997.

[15] C.L. Liu and J.W. Layland, “Scheduling Algorithms for Multipro-
gramming in a Hard Real Time Environment,” J. ACM, vol. 20,
no. 1, pp. 44-61, Jan. 1973.

[16] D.M. Lyons and M.A. Arbib, “A Formal Model of Computation
for Sensory-Based Robotics,” IEEE Trans. Robotics and Automation,
vol. 5, no. 3, pp. 280-293, June 1989,.

[17] J. Magee, N. Dulay, and J. Kramer, “Structuring Parallel and Dis-
tributed Programs,” IEE Software Eng. J., vol. 8, no. 2, pp. 73-82,
Mar. 1993.

[18] J. Magee et al., “Configuring Object-Based Distributed Programs
in REX,” IEE Software Eng. J., vol. 8, no. 2, pp. 139-149, Mar. 1992.

[19] J. Magee, J. Kramer, and M. Sloman, “Constructing Distributed
Systems in Conic,” IEEE Trans Software Eng., vol. 15, no. 6, pp.
663-675, 1989.

[20] L.D. Molesky, C. Shen, and G. Zlokapa, “Predictable Synchroni-
zation Mechanisms for Multiprocessor Real-Time Systems,” The J.
Real-Time Systems, vol. 2, no. 3, pp. 163-180, Sept. 1990.

[21] D.L. Parnas, P.C. Clements, and D.M. Weiss, “The Modular
Structure of Complex Systems,” IEEE Trans. Software Eng., vol. 11,
no. 3, pp. 259-266, Mar. 1985.

[22] J. Purtilo, “The Polylith Software Bus,” ACM Trans. Programming
Languages and Systems, vol. 16, no. 1, pp. 151-174, Jan. 1994

[23] J.M. Purtilo and J.M. Atlee, “Module Reuse by Interface Adapta-
tion,” Software: Practice and Experience, vol. 21, no. 6, pp. 539-556,
June 1991.

[24] R. Rajkumar, “Real-Time Synchronization Protocols for Shared
Memory Multiprocessors,” Proc. 10th Int’l Conf. Distributed Com-
puting Systems, pp. 116-123, Paris, 1990.

[25] L. Sha, R. Rajkumar, and J.P. Lehoczky, “Priority Inheritance
Protocols: An Approach to Real-Time Synchronization,” IEEE
Trans. on Computers, vol. 39, no. 9, Sept. 1990.

[26] S. Ritz, M. Pankert, and H. Meyr, “High Level Software Synthesis
for Signal Processing Systems,” Proc. Int’l Conf. Application Specific
Array Processors, Berkeley, Calif., pp. 4-7, 1992.

[27] S.R. Schach, Software Eng., second edition. Asken Associates, 1993.
[28] D.E. Schmitz et al., “CHIMERA: A Real-Time Programming Envi-

ronment for Manipulator Control,” IEEE Int’l Conf. Robotics and
Automation, Phoenix, Ariz., pp. 846-852, 1989.

[29] D.E. Schmitz, P.K. Khosla, and T. Kanade, “The CMU Reconfig-
urable Modular Manipulator System,” Proc. Int’l Symp. and Exposi-
tion on Robots (designated 19th ISIR), Sydney, Australia, pp. 473-
488, 1988.

[30] B. Selic, G. Gullekson, and P. Ward, Real-Time Object-Oriented
Modeling. New York: John Wiley & Sons, 1994.

[31] T.E. Smith and D.E. Setliff, “Towards an Automatic Synthesis
System for Real-time Software,” Proc. Real-Time Systems Symp.,
San Antonio, Texas, pp. 34-42, 1991.

[32] M. Steenstrup, M.A. Arbib, and E.G. Manes, “Port Automata and
the Algebra of Concurrent Processes,” J. Computer and System Sci-
ences, vol. 27, no. 1, pp. 29-50, Aug. 1983.

[33] W.P. Stevens, G.J. Myers, and L.L. Constantine, “Structured De-
sign,” IBM Systems J., vol. 13, no. 2, pp. 115-139, 1974.

[34] D.B. Stewart and G. Arora, “Dynamically Reconfigurable Embed-
ded Systems–Does it Make Sense?” Proc. Real Time Application
Workshop, Montreal, Oct. 1996.

[35] D.B. Stewart and P.K. Khosla, “Policy-Independent RTOS Mecha-
nisms for Timing Error Detection, Handling, and Monitoring,”
Proc. IEEE High Assurance Systems Eng. Workshop, Niagara, Ont.
Canada, Oct. 1996.

[36] D.B. Stewart and P.K. Khosla, “Mechanisms for Detecting and
Handling Timing Errors,” Comm. ACM, vol. 40, no. 1, pp. 87-94,
Jan. 1997.

[37] D.B. Stewart, D.E. Schmitz, and P.K. Khosla, “The Chimera II
Real-Time Operating System for Advanced Sensor-based Control
Applications,” IEEE Trans. Systems, Man, and Cybernetics, vol. 22,
no. 6, pp. 1,282-1,295, Nov./Dec. 1992.

[38] D.B. Stewart and P.K. Khosla, “Chimera 3.1: The Real-Time
Operating System for Reconfigurable Sensor-Based Control
Systems,” program documentation, Advanced Manipulators
Laboratory, The Robotics Inst. and Dept. Electrical and Computer
Eng., Carnegie Mellon Univ., Pittsburgh, http:// www.ee.umd.edu/serts/

bib/ manuals/Chimera.html .
[39] D.B. Stewart, “Real-Time Software Design and Analysis of Recon-

figurable Multi-Sensor Based Systems,” doctoral dissertation,
Carnegie Mellon Univ., Dept. Electrical and Computer Eng.,
Pittsburgh, 1994, http://www.ee.umd.edu/serts/bib/thesis/dstewart.html.

[40] D.B. Stewart, D.E. Schmitz, and P.K. Khosla, “CHIMERA II: A
Real-Time Multiprocessing Environment for Sensor-Based Robot
Control,” Proc. IEEE Int’l Symp. Intelligent Control, Albany, N.Y.,
pp. 265-271, Sept. 1989.

776 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 23, NO. 12, DECEMBER 1997

[41] VBT-325 The VME+ Analyzer System User’s Manual, VMETRO Inc.,
Houston, 1995.

[42] P. Wegner, “Dimensions of Object-Oriented Programming,” Com-
puter, vol. 25, no. 10, pp. 12-20, Oct. 1992.

[43] P. Wegner, “Concepts and Paradigms of Object-Oriented Pro-
gramming,” OOPS Messenger, vol. 1, no. 1, pp. 7-84, Aug. 1990.

David B. Stewart received his MS degree (1989)
and his PhD degree (1994) in electrical and
computer engineering from Carnegie Mellon
University. He received a BEng degree (1988,
great distinction) in computer engineering from
Concordia University. Dr. Stewart is an assistant
professor with the Department of Electrical Engi-
neering at the University of Maryland, College
Park. He has a joint appointment with the Uni-
versity of Maryland Institute for Advanced Com-
puter Studies (UMIACS) and is a faculty affiliate

with the Institute for Systems Research (ISR). He is director of the
Software Engineering for Real-Time Systems (SERTS) Laboratory. His
research lies in the areas of advanced real-time operating systems
technology and component-based software for embedded systems. In
1991, he was a visiting researcher at the Jet Propulsion Laboratory,
California Institute of Technology.

In May 1997, Dr. Stewart received the George Corcoran Award in
recognition of teaching and education leadership at the University of
Maryland, College Park Campus, effective contribution at the national
level, and creative and other scholarly activities related to electrical
engineering education. He is a recipient of the Natural Sciences and
Engineering Research Council of Canada 1967 Science and Engi-
neering Scholarship. He has also been awarded the Chait Medal and
Computer Engineering Medal from Concordia University; the Prize of
Excellence from the Professional Order of Engineer’s of Quebec, Can-
ada; the Myer F. Pollock Scholarship for academic excellence; the
Concordia University Entrance Scholarship; the Independent Order of
Forester’s University Entrance Scholarship; the National Honor Society
of Canada Scholarship; and the Josten’s Foundation Scholarship. Dr.
Stewart is a member of the IEEE.

Richard A. Volpe received his MS degree
(1986) and his PhD degree (1990) in applied
physics from Carnegie Mellon University, where
he was a U.S. Air Force Laboratory graduate
fellow. His thesis research concentrated on real-
time force and impact control of robotic manipu-
lators. In December 1990, he became a senior
member of the technical staff at the Jet Propul-
sion Laboratory, California Institute of Technol-
ogy. Until late 1993, he was a member of the
Remote Surface Inspection Project, investigating

sensor-based control technology for telerobotic inspection of the Inter-
national Space Station. After late 1993, he led the development of
Rocky 7, a next generation mobile robot prototype for extended-
traverse sampling missions on Mars. Recently he received a NASA
Exceptional Achievement Award for this work, and has joined the
spaceflight team for this 2001 rover mission. His research interests
include real-time sensor-based control, robot design, path planning,
and computer vision. Volpe is a member of the IEEE.

Pradeep K. Khosla received the BTech degree
(honors) from IIT (Kharagpur, India), and both
MS and PhD degrees from Carnegie Mellon
University. He is currently professor of electrical
and computer engineering and robotics, and
founding director of the Institute for Complex
Engineered Systems (which includes the former
Engineering Design Research Center—an NSF
ERC) at Carnegie Mellon University. Prior to
joining Carnegie Mellon, he worked with Tata
Consulting Engineers and Siemens in the area of

real-time control. From January 1994 to August 1996, he was on leave
from Carnegie Mellon and served as a DARPA program manager in
the Software and Intelligent Systems Technology Office (SISTO), De-
fense Sciences Office (DSO), and Tactical Technology Office (TTO),
where he managed advanced research and development programs in
the areas of Information based design and manufacturing, web based
Information technology infrastructure, real-time planning, real-time
software, sensor-based control, and robotics.

Professor Khosla’s research has focused on the theme of “creating
complex electro-mechanical and information systems through compo-
sition of and collaboration amongst building blocks.” Specifically, his
interests are in the area of integrated design-manufacturing systems,
collaborating robots, agent-based architectures for design and control,
software composition for real-time systems, reconfigurable autono-
mous systems, and human systems interface. He is particularly inter-
ested in the application domains of design and manufacturing, and
unstructured environments. He is involved in electrical and computer
engineering, design, and robotics education, both at the graduate and
the undergraduate level. He was a member of the committee that
formulated a curriculum for the PhD program in robotics at Carnegie
Mellon. He was also a member of the Wipe the Slate Clean Committee
that created a new four year undergraduate ECE degree curriculum at
CMU. In support of the new curriculum, he developed and imple-
mented the notion of virtual laboratory, and an introductory freshman
level course “Introduction to Electrical and Computer Engineering” that
emphasizes the notion of teaching in context.

Professor Khosla was the program vice-chair for the 1989 IEEE
International Conference on Systems Engineering; general chair for
the 1990 IEEE International Conference on Systems Engineering;
program vice chair of the 1993 International Coference on Robotics
and Automation; general co-chair of the 1995 Intelligent Robotics Sys-
tems (IROS) conference; and program vice-chair for the 1997 IEEE
Robotics and Automation Conference. He has served as a member of
the AdCom of the IEEE Systems, Man and Cybernetics Society, tech-
nical editor of the IEEE Transactions on Robotics and Automation, and
cair of the education committee of the IEEE Robotics and Automation
Society.

Professor Khosla is a recipient of the Inlaks Fellowship, United
Kingdom; the Carnegie Institute of Technology Ladd award for excel-
lence in research in 1989; two NASA Tech Brief awards; and was
elected as an IEEE fellow in January 1995. Professor Khosla's re-
search has resulted in two books and more than 200 journal articles,
conference papers, and book contributions. Professor Khosla served
as a member of the technical advisory board of the Next Generation
Controller Project (WPAFB, U.S. Air Force and Martin Marietta),
RIMCC, and the Sample Acquisition Analysis and Preservation Project
(Jet Propulsion Laboratory, NASA). He has been an invited participant
to the Department of Commerce workshops on the Intelligent Manu-
facturing Systems program, and USA-Japan R&D consortia and col-
laboration. He is a consultant to several industries in the USA and a
co-founder and chairman of the board of K2T inc.—a high tech com-
pany based in Pittsburgh.

